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Tento článek navazuje na dvě dřívější práce [Řehák. Řeháková 1984; 1986: kap. 
17 a 18], které se zabývaly porovnáním marginálních rozdělení a strukturou čet­
ností ve čtvercových tabulkách párově závislých dat (stručněji řečeno v symetric­
kých tabulkách) a kde byly též obšírně popsány situace, za nichž tyto tabulky vzni­
kají a uvedeny příklady ze sociologických výzkumů.

Cílem této práce je ukázat další úlohy pro taková data a možnosti jejich analýzy 
a současně poskytnout návod, jak získat výsledky pomocí procedury LOGLINEAR 
v systému SPSSX (ú většiny uvedených úloh se bez počítače neobejdeme a SPSSX 
je známý systém prd analýzu dat ve společenských vědách).

Analytické úlohy v symetrických tabulkách lze rozdělit do dvou typů:
a) porovnání marginálních rozdělení.
b) studium struktury četností vzhledem k

— statistické závislosti,
— .symetrii četností podle hlavní diagonály a různým modifikacím pojmu sy­

metrie, ■
— vnějšímu kritériu (funkci) vyjadřujícímu hypotézu o vztahu mezi četnostmi. 

Zde bude uvedeno řešení vybraných úloh typu b) tak, jak je poskytuje metodologie 
log-lineárních modelů. Bude demonstrováno na datech o vzdělání manželských dvo­
jic z výzkumu města Vamberka v r. 1988.1

Metodika log-lineárních modelů se zatím v československé sociologii plně nepro­
sadila. Jejími průkopníky u nás byli T Havránek [1980] a P. Matějů [1985]. Jed­
noduchým úvodem do problematiky je kniha G. Uptona [1978], přehled metod a 
možností poskytují dvě knihy S. J. Habermana [1978. 1979], matematická teorie 
je například v monografii autorů Bishopové, Fienberga a Hollanda [1971], nebo 
Habermana [1974].

V dalším textu bude vždy » (i.j) značit pozorovanou četnost v poli (i.j) dvouroz­
měrné tabulky, m (i.j) očekávanou četnost za určitého modelu, m (i,j) odhad oče­
kávané četnosti, n (* + ) = 2' n (i.j). » (+j) = 2 n (i.j). n = E S « (i. j).

j । ' ’ j
Poznamenejme na začátek, že postup hledáni modelu, který vysvětluje vztahy 

mezi údaji tabulky, spočívá v následných krocích:
a) formulace modelu: log m (i.j) = součet určených faktorů. ■
b) odhad parametrů odpovídajících jednotlivým faktorům.
c) odhad očekávaných četností za platnosti modelu.
d) test dobré shody mezi očekávanými a pozorovanými četnostmi,
c) rozbor struktury reziduálních odchylek  v jednotlivých polích, byl-li model za­

mítnut, a formulace vhodnějšího modelu s návratem k a).
2

Redakce upozorňuje, že matematické vzorce jsou místo kurzívou vysazeny písmem stojatým
(1) Vzdčlání bylo zjišťováno původně na sedmibodové stupnici. Sloučení do čtyř kategorií 

bylo provedeno pro účoly tohoto článku autorkou.
(2) Reziduální odchylkou v poli (i. j) jo zdo míněno ndjustované (upravené) reziduum r(i. j) -
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f) interpretace modelu, byl-li přijat; zde je nutná opatrnost, protože statistická 
shoda může být nalezena u několika i dost odlišných modelů.

Jedním z problémů, který vzniká při logaritmování četností, je přítomnost nulo­
vých četností v tabulce. Připomeňme si, že ty mohou být bud strukturální, nebo 
výběrové. Nuly strukturální plynou z povahy dat: určitá pole nemohou být obsazena 
a model taková pole musí vyloučit. Nuly výběrové jsou důsledkem variability vý­
běru a malé pravděpodobnosti obsazení daného pole: v praxi se výběrové nuly 
odstraňují například přičtením velmi malého kladného čísla do polí s výběrovými 
nulami, nebo přičtením čísla 0.5 (či jiného malého kladného čísla) ke všem četnostem. 
Jinou možností je metoda pseudobayesovského odhadu [Bishop, Ficnberg, Holland: 
401 —433, spec. 432] (ta byla použita na data tabulky 1, k odstranění výběrové nuly 
v poli (1, 4)). V dalším budeme pracovat s tabulkou 2, kde už jsou všechny četnosti 
kladné. ■

Tabulka 1. Vzdělání manželských dvojic

A
B 1 2 3 4

1 39 21 4 0
2 85 163 47 5
3 8 32 46 2
4 1 8 11 9

A(B) = nejvyšší dosažené vzdělání manžela (manželky),
1 = základní (i neúplné), 2 = vyučení nebo střední škola bez maturity nebo střední odborné učiliště 

s maturitou, 3 = střední odborná nebo všeobecná škola s maturitou, 4 = vysoká škola.

Tabulka 2. Vzdělání manželských dvojic - vyhlazená data

Pozn.: Vyhlazení dat bylo provedeno pseudobayesovskou metodou.

A
B 1 2 3 4

1 37,72 21.53 4,62 0,13
2 84,88 161,59 48,23 5,30
3 8,98 32,54 44,42 2,06
4 1,42 8,33 10,73 8,52

("(bj) — m(í,j)) Icíi.jyi4, kdo č(í.J) jo odhad rozptylu náhodné veličiny »(i,J) — m(í.,i) Za 
platnosti modelu mí r(i,.;) asymptoticky standardní normální rozdělení. Asynptotika je pravdě­
podobně v pořádku, je-li každé m(i, j) větší než 25. Není-li tato podmínka splněna, pak roziduálni 
odchylky poskytují jen hrubé indikace velikosti chyb, ale i tak dávají informaci o struktuře od­
chylek od modelu. Některé programy tisknou také (nebo jen) standardizovaná rezidua (»('../) 
"•(i, jYMmli, jV12. která mají za platnosti modelu asymptoticky normální rozdělení s nulovým 
průměrem a rozptylem v li, jj, který je obecně různý od jedničky Proto, pokud jo to možné, 
měli bychom jako pravidlo používat adjustovaná rezidua.
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Model úplné nezávislosti

Hypotéza nezávislosti, obdobně jako u běžné asociační analýzy v libovolných kon- 
tingcnčních tabulkách, je dána některou (z ekvivalentních) formulací pro všechna 
pole tabulky:

n (i. j) = n (i + ) n (+j) /n. (1)
m (i,j) = a (i) b (j).

Druhá formulace říká, že očekávaná četnost v poli (¿,ý) vzniká jako součin dvou ne­
závislých faktorů — řádkového a (¿') a sloupcového b (j). Hypotézu nezávislosti 
můžeme testovat známým Pearsonovým testem chí-kvadrát a odchylky od ní na­
příklad znaménkovým schématem (viz [Řehák, Řeháková 1978]).

Log-lincární model nezávislosti poskytuje paralelní test; je formulován rovnicemi

log m (i, j) = A + AA(i) + AB(j),
27 AA(i) = 2? AB(j) = 0. (2)
i j

kde A je celkový poměr, AA(Í) je efekt ¿-tého řádku (/-té kategorie proměnné A). 
AB(j) je efekt j-tého sloupec (j-té kategorie proměnné B). Kategorie A(<) a B(j) působí 
nezávisle jedna na druhé — vliv A(i) se nemění ve sloupcích, vliv B(j) se nemění 
v řádcích.

Statistiky testu dobré shody dat s určitým modelem, které se nejčastěji v analýze 
dat používají jsou dvě:
a) věrohodnostní statistika G2

G2 = 227 A n (i. j) log (n (i. j)/ih (i. j)). (3)
* i

b) Pearsonova statistika X2

X2 = 27 27 (n(i. j) — m (i, j))2/m (i, j), (4)
* 3

kde íh (Gj) jsou odhady očekávaných četností za daného modelu.
V modelu nezávislosti je

m (i, j) = n (i + ) n (+j)/n (5)

a G2 a X2 mají za hypotézy nezávislosti asymptoticky rozdělení chí-kvadrát s (Z — Z)2 
stupni volnosti, když Z je počet řádků (sloupců) tabulky.

Pro data z tabulky 2 je G2 = 116.35, X2 = 156.29, což při devíti stupních volnosti 
dává pro obě statistiky dosaženou hladinu významnosti P = 0.000 (< 0.050). Model 
nezávislosti, podle kterého by byla vzájemná volba partnerů v manželství zcela ne­
závislá na jejich vzdělání, neplatí.

Model kvazinezávislosti

V symetrických tabulkách bývá tendence k silnějšímu obsazování diagonálních polí, 
tj. kombinací vzájemně si odpovídajících kategorií řádkové a sloupcové proměnné, 
a proto model nezávislosti platí jen vzácně. Může se stát, že po vynechání (blokování) 
těchto polí3, platí pro zbytek tabulky model nezávislosti.

Model kvazinezávislosti předpokládá, že
m (Gj) = « (’) b UV jestliže i ^j, (6)

= 0 , jestliže i=j

(3) Blokovaná pole nemusí být jen pole hlavní diagonály, ale též např. polo s velkou rozi- 
duální odchylkou, či pole se strukturální nulou.
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Vyjádřeno jako iog-Iineární model:

log m (i, j) = X + ^A(i) + AB(j), i^j, (7)
ZAA(i) = 27 2B(j) = 0.
i 3

V tomto případě nelze vyjádřit odhady očekávaných četností algebraickým výra­
zem, počítají se iteračním postupem. Statistiky G2 a X2 mají za modelu kvazinezá- 
vislosti počet stupňů volnosti df = 1 (/—<3) + 1

Data tabulky 2 neodpovídají ani tomuto modelu, neboť G2 = 19.10, X2 = 23.62; 
to dává při pěti stupních volnosti dosažené hladiny významnosti P = 0.002 pro 
G2 a P = 0.000 pro X2. Oproti modelu nezávislosti však došlo ke zlepšení, neboť 
116.35/9 = 12.9 je mnohem větší, než 19.10/5 = 3.8, které je stále ještě daleko od 
jedničky.4

Hypotéza kvazinezávislosti říká, že odhlédneme-li od manželství, v nichž mají 
partneři stejné vzdělání, neprojeví se žádná závislost mezi volbou a vzděláním 
v ostatních manželstvích. Jak vidíme, ani tato hypotéza neplatí. Silný pokles v hod­
notě G2)df mezi testem nezávislosti a kvazinezávislosti ukazuje na existenci vlivného 
faktoru vedoucího ke shodě vzdělání v manželství. Ostatní faktory projevující sc 
při vzniku vzdělanostní nerovnosti manželských párů a vytvářející četnostní struk­
turu, budou zkoumány pomocí dalších modelů a hypotéz.

Model symetrie

Symetrií v dvourozměrné symetrické tabulce rozumíme situaci, kdy očekávané 
četnosti polí rozložených symetricky vzhledem k diagonále jsou si rovny, tj.

m (i, j) = m (j, í) pro všechna i a j. (8)

Tomu odpovídá log-lineární model

log m (i, j) = X + AA(i) + AB(j) + AAD(i; j), 
2A(i) = AB(i) pro všechna i,

AAB(i, j) = AAB(j, i) pro i g j, (9)
2^A(i) = 27AB(j) = ^atcíJ) = ZAAB(i,j) = o.
1 3 » 3

Parametr AAB(iý) se interpretuje jako interakční efekt mezi i-tou kategorií pro­
měnné A a ýtou kategorií proměnné B. Odhady očekávaných četností jsou

m (i, j) =
(n(i, j) + n(j,i))/2, i ^ j, 

n (i, i), i=j.
(10)

statistiky G2 a X2 mají asymptoticky rozdělení chí-kvadrát s I (1—1)12 stupni vol­
nosti.

Model symetrie tedy připouští specifické interakce mezi kategoriemi proměnných. 
Na jeho platnost nemá vliv diagonála; marginální populační rozdělení jsou totožná.

Kdyby platil model (9) pro data tabulky 2, znamenalo by to, že interakce mezi 
kategoriemi vzdělání v manželských dvojicích existují, že jsou nezávislé na jejich 
nositelích (muž, žena) a že efekty jednotlivých kategorií vzdělání manžela jsou stejné 
jako odpovídající kategorie vzdělání manželky, Z tabulky 2 je však na první pohled 
zřejmé, že v ní model symetrie platit nebude (velmi rozdílné četnosti n (i, j) a n (j, i)

(4) Jedním z kritérií vhodnosti modelu je pomčr G2ldf, resp. X2/df (df = počet stupňů vol­
nosti statistiky); vychází z toho, že očekávaná hodnota G2 i X2 je rovna df. Čím větší je statistika 
než df, tím horší je model.
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a marginální četnosti #/(<+). n( + i)). Skutečně, G2 = 53.2, A2 = 49.8, df/= 6, 
P = 0.000 pro obě statistiky. Model je horší, než model kvazinezávislosti (53.2/6 = 
8.9 > 3.8), ale lepší než model nezávislosti (8.9 < 12.9). Rozdíl proti nezávislosti 
může být způsoben tím. že na platnost modelu (9) nemá vliv diagonála, jejíž obsazení 
je na první pohled velmi výrazné. Rozdíl proti kvazinezávislosti může být způsoben 
jak zřejmou rozdílností marginálních rozdělení, tak ovšem i možnou neplatností 
interakční symetrie.

Model kvazisymetrie

Model symetrie je velmi přísný a ve společenskovědní praxi bude platit jen zř ídkakdy 
Méně omezující je model kvazisymetrie, který předpokládá, že

m (i,j) = a(i) b(j) d(i,j), 
d(i,j) = d(j(i), i/j, (11)

nebo alternativně
m(i.j) m(j,k) m(k,i)/m(j,i)m(k,j) m(i,k) = 1.

Log lineární vyjádření je

log m(i,j) = A + AA(i) + AB(j) + AAB(i,j),
AAB(i,j) = AAB(j,i), i^j, (12)
2?aa(í) = r;B(j) = rAAB(í,j) = z aab(íj) = o.
' j i j

Model kvazisymetrie se liší od modelu symetrie tím, že už nepředpokládá rovnost 
řádkových a sloupcových efektů, tj. shodu marginálních rozložení,ale pouze symetrii 
interakčních efektů. Odhady očekávaných četností mimo diagonálu se nedají vy­
jádřit algebraickým výrazem, získávají se pomocí iteračních algoritmů. Pro odhady 
na diagonále platí m(M) = zi(m) jako u modelu symetrie.5 Statistiky G2 a A2 mají 
asymptoticky rozdělení chí-kvadrát s (I — l) (I—2)/2 stupni volnosti. Závažnost 
modelu spočívá v tom, že odhaluje a měří skryté symetrické interakce mezi katego­
riemi řádkové a sloupcové proměnné po extrakci a odečtení vlivu rozdílných margi­
nálních efektů.

Pro tabulku 2 a model kvazisymetrie je G2 = 0.90, A2 = 0.88, což při třech stup­
ních volnosti dává dosaženou hladinu významnosti 0.825 pro G2 a 0.829 pro A2 
a proto tento model odpovídá datům velmi dobře; to dokumentuje i tabulka 3. 
Všimněme si, že adjustovaná rezidua r(ž,ý( a r(ý,í) se liší jen znaménkem, tak je 
tomu v modelu kvazisymetrie vždy.

První závěr tedy je, že existuje symetrická interakce mezi kategoriemi vzdělání 
u manželských dvojic přes nerovnost vzdělanostní struktury mužů a žen. Další 
interpretace vychází z odhadů hodnot řádkových, sloupcových a zvláště interakčních 
efektů.

Tyto odhady, odhady jejich rozptylů a další odvozené charakteristiky (c-skóry. 
intervaly spolehlivosti) jsou tím přesnější, čím větší je počet pozorování, a to nejen

(5) Modely symetrie a kvazisymetrie byly formulovány pro úplné tabulky, ale protože jsou
v obou případech odhady očekávaných četností diagonály rovny příslušným pozorovaným čet­
nostem, působí odchylky od modelů jen pole mimo diagonálu a proto se odhady očekávaných
četností v nediagonálníeu polích, roziduální odchylky, hodnoty <•-. -V2. ani počty stupňů volnosti 
nemění, ať už pracujeme s úplnou tabulkou nebo blokujeme diagonálu, či má tabulka na diago­
nále strukturní nuly. Mění se však odhady parametrů lambda, neboť když vyloučíme diagonálu, 
vyloučíme parametry AAB(i, i). I Sk i S /. Poznamenejme ještě, žo pokud vyjmeme diagonálu, 
je pro 1 = 3 model kvazisymetrie ekvivalentní s modelem kvazinezávislosti a pro 1 > 3 plyne 
kvazisymetrie z kvazinezávislosti.
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Tabulka 3. Pozorované četnosti, odhady očekávaných četností a adjustovaná rezidua při modelu kvazisy-
metrie pro tab. 2.

B
A

1 2 3 4

1 37,72 21,53 4,62 0,13
37,72 22,09 4,02 0,17
- -0,37 0,41 -0,11

2 • 84,88 161,59 48,23 5,30
84,32 161,59 49,70 4,39
0,37 - - 0,83 0,81

3 8,98 32,54 44,42 2,06
9,58 31,07 44,42 2,93

-0,41 0,83 - - 0,78

4 1,42 8,33 10,73 8,52
1,38 9,24 9,86 8,52
0,11 - 0,81 0,78 —

G2 = 0,90, P = 0,825, X2 = 0,88, P = 0,829, df = 3

celkově, ale i v každém poli tabulky. Je dosud málo známo o tom, pro jak velké čet­
nosti v polích je už dosaženo dostatečné přesnosti. V datech je málo vysokoškoláku 
jak mezi muži, tak mezi ženami a některá pole jsou tak mizivě obsazena, že k získa­
ným výsledkům je třeba přistupovat jen velmi opatrně.

Každý z-skór slouží k testu hypotézy, že k němu příslušné lambda je nulové. Pokud 
bereme každý efekt zvlášť, pak ta lambda, která jsou v absolutní hodnotě větší než 
1.96 lze považovat za nenulová (hladina významnosti a = 0.05). Pokud budeme 
interpretovat více efektů najednou a zajímá nás významnost celé struktury najednou, 
je správné použít simultánní test, např. Holmův sekvenční postup.6

Hlavní efekty zde nejsou zvlášť zajímavé, lze říci, že v podstatě odráží marginální 
strukturu tabulky. Porovnáme-li mezi sebou 2A(i) a AB(z) (¿ = 1,..., 4) vidíme, proč 
nemohl platit model symetrie. Příslušné z-skóry jsou7

(6) Holmův sekvenční postup jo popsán v publikaci Řehák, Řeháková [1986 : 324], v níž 
lze nalézt též tabulku kritických hodnot dvoustranného normálního testu pro simultánní testo­
vání hypotéz (Tabulka A).

(7) Výpočet jmenovatelů se provádí podle vzorce:
var (ZA(i) — ÁB(i)) = var ZA(i) + var AB(i) — 2 cov (ZA(i), ZB(i)). Protože však nčkteré programy 
(např. LOGLINEAR v SPSSX) netisknou var ZA(Z), var ZB(Z). cov (ZA(Z). ZB(Z)), jo výpočet

1-1
var (ZA(Z) — ZB(ZJ) poněkud nepříjemný: var (ZA(Z) — ZR(Z)) - 2? var (ZA(i)) *

i = 1

‘ 1-2 1-1
+ 2 22 X cov (ZA(i). ZA(j)) 4-

><í

1-1 1-2 1-1
+ 22 var (ZB(i)) + 2 2 Z cov (ZB(i). ZB(j)) 

i=l . Kj

-2 V ^’cov (ZA(i), AA(0. AB(j)).

i=l j=l
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Tabulka 4a. Odhady parametrů modelu kvazisymetrie pro tab. 2.

Parametr Odhad Std. chyba Z-skór 95 % interval spolehlivosti

A(D - 0,836 0,175 - 4,777 - 1,179 - 0,493

A
A (2) 1,301 0,135 9,637 1,036 1,566

A (3) ' 0,216 0,153 1,412 - 0,084 0,516

A (4) ■ - 0,681 0,181 - 3,762 - 1,036 - 0,326

A(D 0,236 0,149 1,584 - 0,056 0,528

g
A (2) 1,035 0,154 6,721 0,733 1,337

A (3) 0,420 0,154 2,727 0,118 0,722

A (4) - 1,691 0,248 -6,818 - 2,177 - 1,205

A(1,1) 1,805 0,348 5,187 1,123 2,487

A (2,1) 0,472 0,142 3,324 0,194 ‘ 0,750

A (2,2) 0,324 0,169 1,917 - 0,007 0,655

A(3,1) - 0,618 0,213 - 2,901 - 1,035 - 0,200

AB
A (3,2) - 0,240 0,143 - 1,678 - 0,520 0,040

A(3,3) 0,733 0,206 3,558 0,329 1,137

A (4,1) - 1,659 0,519 - 3,196 - 2,676 - 0,642

A (4,2) - 0,556 0,216 - 2,574 - 0,979 - 0,133

A (4,3). 0,125 0,226 0,553 -0,318 0,568

A (4,4) 2,090 0,412 5,073 1,282 2,898

Pozn.: A = Kategorie vzdělání muže
B = kategorie vzdělání ženy

AB = kombinace kategorií vzdělání pro muže i ženy

(AA(1) - AB(l))//var (AA(1) - A^l)) = -1.072/0.203 = -5.277,

(2A(2) - AB(2))//v^T(AA(2) - AB(2)) = 0.266/0.147 = 1.810,

(AA(3) - ABfSJV/^rUÁTsj^ABlsjj = -0.204/0.176 = -1.159,

(AA(4) - AB(4))/l'^(A^^ 1.010/0.285 = 3.540,

takže rozdíly AA(1) — AB(1) a AA(4) — AB(4) jsou významně odlišné od nuly (<x = 0.05). 
a to je v rozporu s předpoklady modelu symetrie (v souboru je statisticky významná 
převaha žen nad muži u základního vzdělání a naopak převaha mužů nad ženami 
u vysokoškolského vzdělání). . .

Všechny variance a kovariance na pravé stranř už nalezneme ve výstupech z výše uvedeného 
programu.
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Interakční efekty vyjadřují intenzitu vzájemné volby od vysoké přitažlivosti 
(velké kladné číslo) až k vysoké nepřitažlivosti (záporné číslo s velkou absolutní hod­
notou). Simultánním testem (a = 0.05) zjistíme, že z interakcí jsou nenulové X (1,1), 
X (2,1), X (3,1), X (3,3), X (4,1), X (4,2), a X (4,4). Kladné znaménko je u X (1,1), X (2,1), 
X (3,3) a X (4,4), takže kombinace vzdělání 1—1, 2 — 1, 3—3, 4—4 se přitahují. Zá­
porné znaménko u X (3,1), X (4,1), X (4,2) říká, že kombinace 3 — 1, 4 — 1, 4 — 2 se ne-

Tabulka 4b. Hodnoty koeficientů A (i, j) v modelu kvazisymetrie pro tabulku 2

i
j 1 2 3 4

1 1,8 0,5 - 0,6 - 1,7
2 0,5 0,3 -0,2 - 0,6
3 - 0,6 -0,2 0,7 0,1
4 - 1,7 - 0,6 0,1 ' 2,1

přitahují. U kombinací 2—2, 3—2, 4 — 3 se nenulový interakční efekt statisticky vý­
znamně neprojevil. Hodnoty parametrů je nutno posuzovat relativně vzhledem k celé 
struktuře, neboť jsou vázány vztahy (12). Interpretace koeficientů proto musí vždy 
vycházet z kontrastů jejich hodnot.

Výsledky tabulky 4a tedy říkají, že při zachování symetrie volby sc párují přede­
vším obě nižší kategorie. Dále se tu upřesňuje informace o významnosti volby shod­
ných kategorií: neplatí u všech stupňů vzdělání, neboť u kombinace 2 — 2 odpovídá 
počet manželství očekávané hodnotě za předpokladu nezávislého (náhodného) vzdě- 
lanostního párování. Snížení intenzity vzájemné volby v párech se týká „vzdálených“ ’ 
kategorií. To je dobře vidět z tabulky 4b. z jejíž struktury je dále možno vyčíst kle­

. sající uspořádání hodnot směrem od diagonály a na jeho základě hypotézu dále spe­
cifikovat — viz další, tzv. distanční model.

Distanční modely

Parametry 2AB(tj) v tab. 4b mají klesavý charakter ve směru od diagonály, to zna­
mená, že čím dále jsou od sebe kategorie vzdělání, tím méně takových kombinací se 
vyskytuje u partnerů v manželství. Je tedy možné pokusit se o upřesnění modelu 
a k podmínce kvazisymetrie ještě přidat klesavý charakter interakčních faktorů 
ve směru od diagonály. To lze provést distančními modely, které jsou ovšem použi­
telné jen v situacích, kdy proměnné jsou alespoň ordinální, aby měl smysl pojem 
„vzdálenost kategorií pioměnné". Jednoduchý distanční model

log m(i,j) = X + AA(i) + 2B(j) + >7 |i - j|, (13)
¿7A(i) = ¿7B(j) = 0

dává interakci mezi kategoriemi i aj do souvislosti s jejich vzdáleností měřenou jako 
i — ý|. přičemž váha této vzdálenosti (parametr rj) je konstantní, nezávislá na i aj. 
Pro r] = 0 přechází model do modelu nezávislosti, je-li studována celá tabulka, nebo 
do modelu kvazinezávislosti, je-li vyloučena diagonála.

Statistiky dobré shody dat z tabulky 2 s distančním modelem (13) jsou G2 = 8.81, 
( X2 = 8.14. což při osmi stupních volnosti (obecně / (7-2)) dává dosažené hladiny 

významnosti P = 0.358 a P = 0.420, takže model nelze zamítnout. Dlužno říci, že
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Tabulka 5. Pozorované četnosti, odhady očekávaných četností a adjustovaná rezidua při distančním
modelu pro data z tab. 2.

G2 = 8,81, P = 0,358, X2 = 8,14, P = 0,420, df = 8

B
A

1 2 3 4

37,72 21,53 4,62 0,13
1 40,97 17,51 5,01 0,51

- 1,19 1,34 - 0,20 -0,55

84,88 161,59 48,23 5,30
2 75,93 170,37 48,74 4,96

2,10 - 2,38 - 0,14 0,20

8.98 32,54 44,42 2,06
3 12,65 28,38 42,63 4,34

- 1,27 1,14 0,57 - 1,33

1,42 ' 8,33 10,73 8,52
4 3,45 7,73 11,62 6,20

- 1,22 ■ 0,27 - 0,36 1,41

vysvětluje data hůře, než model kvazisymetrie (12), což je vidět i z porovnání ad- 
justovaných reziduí z tabulky 3 a 5.
Největší odklon od modelu je působen druhou kategorií, a to v polích (2,1) a (2,2), 
která se kompenzují. Přitažlivost kombinace vzdělání 2-2 je výrazně menší než 
u 1-1, 3-3, 4-4 a kombinace (muž. 2) — (žena. 1) je zastoupena více, než model čeká. 
Parametr rj je záporný a vysoce významný. V absolutní hodnotě je výraz r, |ř — jj 
tím větší, čím jsou od sebe kategorie vzdělání partherů vzdálenější.

V modelu kvazisymetrie působí odchylky jen pole mimo diagonálu, a to není 
pravda v distančním modelu. Zkusme ho tedy ještě jednou, ale na tabulku s vyne­
chanou diagonálou. Statistiky dobré shody jsou teď G2 = 1.64. X2 = 1.56. což pří

Tabulka 6. Odhady parametrů distančního modelu pro tab. 2.

Parametr Odhad Std. chyba 95 % Interv. spol. z-skór

Hl)
A A (2)

A (3) '
A (4)

- 0,485 0,122 - 0,724 • - 0,247 - 3,988 
. 0,961 0,081 0,802 1,119 11,874 
- 0,002 0,102 - 0,202 0,197 - 0,022 
-0,474 0,160 - 0,788 - 0,160 - 2,962

A (1)
B A (2)

A (3)
A (4)

0,591 0,105 0,385 0,797 5,626
0,570 0,094 0,385 0,755 6,032
0,148 0,102 - 0,052 0,348 1,448

- 1,309 0,198 - 1,697 - 0,921 -6,611

ab n — 0,829 0,081 - 0,988 -0,670 - 10,247
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Tabulka 7. Pozorované četnosti, odhady očekávaných četností a adjustovaná rezidua při distančním 
modelu pro tabulku 2 s vynechanou diagonálou.

B
A

1'2 3 4

1
- 21,53 4,62 0,13
- 22,28 3,69 0,31

' - - 0,50 0,62 - 0,33

2
84,88 - 48,23 5,30
84,13 - 50,14 4,14
0,50 - - 1,05 0,99

3
8,98 32,54 - 2,06

' 8,82 31,72 - 3,04
0,09 0,43 - - 0,87

4
. 1,42 8,33 10,73

2,33 8,40 9,75 -
- 0,72 - 0,04 0,87 -

G2 = 1,64, P =0,801, X2 = 1,56, P = 0,816, df = 4

čtyřech stupních volnosti (obecně df = 1(1-3)) dává dosaženou hladinu významnosti 
P = 0.801 a P = 0.816. Je zřejmé, že nediagonální data vyhovují distančnímu 
modelu (13) lépe, než data úplná. Výsledky jsou shrnuty v tabulce 7 a 8. Všimněme 
si, že vysoké reziduum v poli (2,1) zmizelo. To potvrzuje domněnku, že v předchozím 
modelu vadilo zvláštní postavení pole (2.2).

Vzdálenost mezi kategoriemi i a j nemusí být v distančním modelu vyjádřena jen 
pomocí |ť-ý|, ale jakoukoliv jinou rozumnou funkcí, např. (t-ý)2, která vyjadřuje rychlejší 
pokles nebo růst interakce, než |í-ý|. Pro data z tabulky 2 bez diagonály a model

log m(i,j) = A + Aa(í) + AB(j) + >?(i-j)2. (14)
2?2A(i) = ¿7B(j) = 0

Tabulka 8. Odhady parametrů distančního modelu pro tab. 2 s vynechanou diagonálou.

Parametr Odhad Std. chyba 95 % interv. spol. z-skór

A lili

A (3) 
A (4)

- 0,496 0,184 - 0,857 -0,135 - 2,693
1,139 " 0,189 0,768 1,509 6,012

- 0,143 0,152 - 0,441 0,155 -0,941
-0,499 0,203 -0,897 - 0,101 -2,458

A(l)
B A (2) 

A (3)
A (4)

0,562 0,148 0,272 0,852 3,799
0,869 0,208 0,461 1,277 4,177
0,044 0,156 -0,262 0,350 0,286

- 1,475 0,297 - 2,057 - 0,893 ' - 4,966

AB n - 0,973 0,227 - 1,418 - 0,528 - 4,279
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Tabulka 9. Interakční členy modelu (13) pro tabulku 4x4

0 7) 2tj 3tj

t) 0 tj 2t)

2rj r) 0 p

3tj 2rj T] 0

Tabulka 10. Interakční členy modelu (15) pro tabulku 4x4

0 »11 »11 + »12 »h + »12 + »13

ni 0 »12 »12 + »|3

7)1 + 7)2 »12 0 »13

7)1 + »12 + »13 . »12 + ni »13 0

dostaneme G2 = 0.92, P = 0.922, X2 = 0.90, P — 0.924, dj = 4 a největší adjusto- 
vané reziduum —0.85 v poli (2,3), což je ještě lepší výsledek než pro model (12). 
Odhad parametru tj je roven —0.301; model tak ukazuje, že přitažlivost kategorií 
vzdělání při vstupu do manželství klesá velmi rychle s rozdílem mezi nimi.

Distančních modelů existuje celá řada, zde ještě ukážeme jedno zobecnění modelu 
(13). Tabulka 9 ukazuje, jak vypadá interakční člen u log m(i,j) pro tabulku 4x4 
a model (13). Všimněme si, že interakční členy ve vedlejších diagonálách jsou vždy 
stejné, tj. mezi kategoriemi se předpokládá stejná vzdálenost.
Jednoduché zobecnění, které ukazuje tabulka 10 a které vyjadřuje proměnnou 
vzdálenost mezi kategoriemi, vede na distanční model

log m(i,j) = A + AA(i) + AB(j) 4- 2 >/k, (15)
k-g 

g = min(i,j) < h = max(i,j), 
log m(i,i) = A + AA(i) + AB(i), 

XAA(i) = XAB(j) = 0,

který lze aplikovat jak na celou tabulku (pak má dj = 1(1-3) + 2 stupňů volnosti), 
tak pouze na nediagonální pole (pak má dj — (/-2)2 stupňů volnosti).8

Pro data z tabulky 2 a model (15) dostaneme G2 — 6.29, P = 0.392, X2 = 5.83, 
P = 0.442, dj = 6, maximální adjustované reziduum = —2.04 v poli (2,2). Odhady 
parametrů r)i, r]2- rj3 jsou po řadě rovné —0.695, —0.842, —1.179 a jsou významné 
na hladině a = 0.05. Shoda modelu s daty je prakticky stejná jako pro model (13) 
a protože nelze prokázat, že by se parametry rji, rji. r^ od sobe významně lišily, ne­
přináší model (15) oproti (13) nic nového pro interpretaci.

(8) Pro 1=4 modoly (13) a (15) splývají, jsou-li použity pouze na nediagonální polo.
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Závěr

Uvedené modely nejsou zdaleka všechny, které jsou možné pro dvourozměrné sy­
metrické tabulky; jsou to spíše ty základní a méně rafinované, ale dobře interpreto- 
vatelné. Řadu dalších lze nalézt např. v knize autorů Bishopové, Fienberga a Hollan­
da [1977], kde je též provedeno zobecnění pojmu symetrie na vícerozměrná tabulky.

Dodatek: Zadání modelů v Jazyce SPSSX

A. Modely nezávislosti (1), kvazinezávislosti (6) a distanční modely (13) a (14).

Zde nejsou žádné problémy, jen nepříjemnosti spojené s dopočtem závislých parametrů (z pod­
mínek, kteřé jsou u modelů vždy uvedeny) a ovšem též jejich standardních chyb, z-skórů a inter­
valů spolehlivosti, pokud chceme o parametrech provádět statistickou inferonci. Zadání ukážeme 
na datech z tab. 2. ■

DATA LIST LIST / A B N
VARIABLE LABELS A ‘VZDEL. MUŽE' B ‘VZDEL. ZENY'
VALUE LABELS A B 1 ‘ZAHL’ 2 ‘2 + 3 + 4’

3 ‘STR. S MAT’. 4 ‘VYSOK.’
COMPUTE ND = 1
IF (A EQ B) ND = O
WEIGHT BY N
LOGLINEAR A B (1,4)

/ PRINT = ALL
/ »MODEL NEZÁVISLOSTI
/ DESIGN = A B
/ »MODEL QUAZINEZAVISLOSTI
/ CWEIGHT = ND
/ DESIGN = A B .

BEGIN DATA
1 1 37.72
1 2 21.53
1 3 4.62

4 2 8.33
4 3 10.73
4 4 8.52

END DATA
COMPUTE D = ABS (A - B)
LOGLINEAR A B (1,4) WITH D

/ PRINT = ALL
/ »DISTANČNÍ MODEL (13)
/ DESIGN = A B D
/ »DISTANČNÍ MODEL (13) BEZ DIAGONÁLY
/ CWEIGHT = ND •
/ DESIGN = A B D

Poznámky: 1) ND je proměnná blokující diagonálu
2) Pro distanční model (14) se nahradí proměnná D proměnnou DD = (A — B)»»2.
3) Mezi příkazy BEGIN DATA a END DATA je zařazen vstup tabulky 2.

B. Distanční model (15).

Zde je kromě dat nutno zajistit vstup s hodnotami pomocných proměnných Wl, W2, W3. jejichž 
koeficienty jsou parametry T]i, tjz, r)3 v jednotlivých polích tabulky (viz tab. 10).
V tabulce I x I je takových proměnných I — 1.
DATA LIST LIST / A B N Wl W2 W3
VARIABLE LIBELS A ‘VZDEL. MUŽE’ B ‘VZDEL. ZENY’
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VALUE LABELS A B 1 ‘ZAKL’. 2 ‘2 + 3 + 4’

3 ‘STR. S MAT* 4 ‘VYSOK 1

WEIGHT BY N
LOGLINEAR A B (1,4) WITH W1 W2 W3

/ PRINT = ALL
/ »DISTANČNÍ MODEL (15)
/ DESIGN = A B W1 W2 W3

BEGIN DATA

END DATA

l 1 37.72 0 0 0
1 2 21.53 1 0 0
1 3 4.62 1 1 0
1 4 0.13 1 1 1
2 1 84.88 1 0 0
o 2 161.59 0 0 0
2 3 48.23 0 1 0
2 4 5.30 0 1
3 1 8.98 1 1 0
3 2 32.54 0 1 0
3 3 44.42 0 0 0
3 4 2.06 0 0 1
4 1 1.42 1 1 1
4 2 8.33 0 1 1
4 3 10.73 0 0 1
4 4 8.52 0 0 0

C. Model symetrie (9) a kvatisy metric (12)

Zadání ověření modelů symetrie a kvazisymotrie, pokud chceme znát všechny parametry, je 
velmi pracná záležitost, a to tím pracnější, čím větší jo rozměr / tabulky. Při častějším používání, 
nebo při čtení dat přímo ze souboru, bude nutné připravit zadání pro vytvoření pomocných pro­
měnných, či příslušnou makroinstrukci.

DATA LIST LIST / A B N LI L2 L3 LU L21 L22 L31 L32 1,33
VARIABLE LABELS A ‘VZDEL. MUŽE’ B ‘VZDEL. ZENY’
VALUE LABELS A B 1 ‘ZAKL.’ 2 ‘2 + 3 + 4’

3 ‘STR. S MAT.’ 4 ‘VYSOK.’
WEIGHT BY N
LOGLINEAR A B (1,4) WITH LI L2 L3

LU L21 L22 L31 1,32 L33 -
i PRINT = ALL
/ »MODEL SYMETRIE
/ DESIGN = LI L2 L3 LU 1,21 1,22 L31 L32 L33
I »MODEL QUAZISYMETRIE
/ DESIGN = A B LU L21 L22 L31 L32 L33

BEGIN DATA

1 1 37.72 2 0 0 o 0 0 0 0 0
1 2 21.53 1 1 0 0 1 0 0 0 0
1 3 4.62 1 0 1 0 0 0 1 0 0
1 4 0.13 0 -1 -1 -2 -1 0 -1 0 0
2 1 84.88 1 1 0 0 1 0 0 0 0
2 2 161.59 0 2 0 0 0 2 0 0 0
2 3 48.23 0 1 1 0 0 0 0 1 0
2 4 5.30 -1 0 -1 0 -1 -2 0 -1 0
3 1 8.98 1 0 1 0 0 0 1 0 0
3 2 32.54 0 1 1 0 0 0 0 1 0
3 3 44.42 0 0 2 0 0 0 0 0 2
3 4 2.06 -1 -1 0 0 0 0 -1 -1 -2
4 1 1.42 N. 0 -1 -1 -2 -1 0 -1 0 0
4 9 8.33 -1 0 -1 0 -1 -2 0 -1 0
4 3 10.73 -1 -1 0 0 0 0 -1 -1 -2
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4 4 8.52 —2—2—2222222
END DATA

Určení pomocných proměnných pro zadání:

a) I = 4 '
Hodnoty pomocných proměnných pro A = i a B = j jsou

Ll(i.j) = q(i,l) + q(j,D, L2(i,j) = q(i,2) + q(j,2), L3(i,j) = q(i,3) + q(j,3),
LllXi.j) = 2q(i,l) q(j,l), L21(i,j) = q(i,2) q(j,l) + q(i,l) q(j,2),
L22(i,j) = 2q(i,2) q(j,2), L31(i,j) = q(i,3) q(j,l) + q(i,l) q(j,3),
L32(i,j) = q(i,3) q(j,2) + q(i,2) q(j,3), L33(i,j) = 2q(i,3) q(j,3), 
q(i,r) = 1, i = r, 

= 0, i ^ r, i < 4/ 
= -1, i = 4.

b) Obecný případ tabulky 1 x l

Jo třeba vytvořit (Z — J) (/ 4- 2)/2 pomocných prorhěnných s hodnotami pro A = i a B = j
Lk(i,j) = q(i,k) + q(j.k), k — 1, .... I — 1
Lrs(i,j) q(i,r) q(j,s) -t q(i,s) q(j,r); r,s = 1,..., I I; r ž s

' q(i,r) = 1, i = r,
= 0, i + r, i < I,
= -1, i - I.

Odhady parametrů pro

a) model symetrie

Označme čísla, ktorá dostaneme ve výstupech z SPSSX v části „odhady parametrů" u proměn­
ných LL L2....... LU - 1), LIL L21..........LU - P, (I - U jako MUL MUV--. MU - 1L m(L1).
HUJL --, M^ — 1L U — !))• Pak odhady parametrů modelu (9) jsou

1-1
;*(i) = zB(i) = ^(i)- i g i g i, ^o = r /((i), 

i=l
AAB(i,j) = AAB(j,i) = ^(j, j) = /((j, i), 1 š j S i S I,

1-1
p(I,j)= 5 p(k, j) - 2/,(j,j), 

k-1, k*j
AAB(i.i) ^ 2p(i, 1), 1 g i g I,

1-1 1-1 
p(I, I)= s Z p(i, j). 

i=l j = l

b) model kvazisymetrie

Označme čísla, která dostaneme ve výstupech z SPSSX v časti „odhady parametrů“ u proměn­
ných A, B, LU, L21...... LU-L U-L jako /<*(/),..., p^U- L, li^U........I^U-L, mU.1L
pí.2. 1) ■■■M(U — U.A1 — 1L Odhady parametrů modelu (12) z nich určíme jako

a 1-1
Aa(í) = ^(j), 1 g i ^ I, ma(I) = - 2? /<A(i), 

i=l

AB(i) = ^(i), ; g i g ! //B(I) .= - 27 /<B(i), 
i=l .

AAB(Í, j) = AAB(j_ i) = ^(j, j) = /l(j, i), 1 g j < i g I,

I—-1
p(I,j) =. - E /t(k, j) - 2/<(j, j), 

k=l, kíj
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1-1 1-1
2AB(i, i) = 2/z(i, i), 1 š i š I, /<(LD = s 27 //(i, j). .

*=1 j=l

Pokud bychom nechtěli ověřovat model symetrie, vynechali bychom LI, L2, L3 (obočně Hj — 1)) 
v řádku DATA LIST a LOGLINEAR, celý DESIGN pro model symetrie a čtvrtý, pátý a šestý 
(obecně I 4- druhý) sloupec mezi BEGIN DATA a END DATA. (9)

D. Motel symetrie a kvazisymetrie 8 vynechanou diagonálou:

a) Symetrie

Pro tabulku Ixl musíme vytvořit 1 — 1 proměnných Lk, kde Lk(i, j) = Lk(j, i) = q(i, k) + 
q(j, k); k=l,..., I —1; i,j = l,..., I (též můžeme Lk(i, i) položit rovno nulo pro i = l,..„ L 
k=l,..., 1—1) a dále I(I — 3)/2 proměnných Lre, kde r > 8, r = 2,..., I — 1, 
8=1, ..., 1-3 a
Lrs(i, i) = 0,
Lrs(I, I - 2) = Lrs(I - 2, I) = q(I, r) q(I - 2, s) + q(I, s) q(I - 2, r) + 1,
Lrs(I, I - 1) = Lrs(I - 1, I) = q(I, r) q(I - 1, s) + al, s) q(I - 1, r) + 1, 
Lrs(I — 1,1 — 2) = Lrs(I - 2, I - 1) = -1.
Lrs(i, j) = Lrs(j, i) = q(i, r) q(j, s) 4- q(i, s) q(j, r) 
pro ostatní dvojice (i, j), přičemž 
q(i, r) = 1, i = r,

= 0, i ^ r, i < I,
= -1, i = I.

Prakticky to znamená, že máme-li už připravené hodnoty Lk(.i,j) a Lrs(t,j) pro kornpletn 
tabulku, dostáném? z nich hodnoty pro tabulku s blokovanou diagonálou tak, že Lk^i, j) pře 
vezmeme beze změny, Lrs(i, i) pro ¿=/,..., I nahradíme nulami, Lrs(I — 1, I — 2) a Lrs(I — 2 
I — 1) nahradíme minus jedničkami, k hodnotám Lrs(I, I — 7), Lrs(I — 1, Z), Lrs^I, 1 — 2) 
Lrs(I — 2, I) přičteme jedničky a zbytek převezmeme beze změny. z_ A
A Odhady parametrů ve výstupech není nutné přepočítávat, ale je třeba dopočítat AA(Z), AB(Z), 
AAB(Z — 1,1 — 2), ^AB(Z,J) pro j =/,..., I — 1 podle vzorců

A 1-1 1-1 .
AA(D = s AA(i) = &(!) = - 5 AB(i). 

i=l i=l .

A 1-1 , 1-1 A I"' A
2AB(I - 1,1 - 2) = s AAB(Í, 1) - S AAB(i„2) - ... - s AAB(i, 1-3) = 

i = 2 i = 3 i = I-2

I-] 1-3 _
= - S S 2AB(i, j), 

i 7 i

a !-l A
AAB(I, j) = - S AAB(j, k), j < I.

k* I

6) Kvazisymctrie

Pro tabulku I :< I musíme vytvořit jen Z(Z — 3) /2 proměnných Lre podle stejných vztahů jako

(9) Čtenář se může na příkladě tohoto dodatku přesvědčit, že ani světově renomované pro­
gramové systémy nejsou příliš uživatelsky vlídné. Zde je to vidět hned na dvou aspektech: 
nutnost dopočítávat a dokonce přepočítávat parametry, abychom dostali interpretačně důleži­
tou informaci a nutnost složitě vytvářet pomocné proměnné pro složité zadání jednoduchých 
modelů. A což teprve kdybychom chtěli znát i odhady rozptylů odhadů parametrů, které nejsou 
ve výstupech! Pro zájemce připomeňme tři užitečně vzorce: .

N N
var ( 27 Xd = 27 var X[ + 2 27 27 cov (Xi, X,),

i=l i=l i<j '

var aX = a2 var X, cov (a X, b Y) = a b cov (X, Y).
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u symetrie. Rovněž dopočty odhadů parametrů provedeme stojným způsobem, zde ovšem 
wn * wi.

Následuje ukázka zadání na datech z tah. 2.

DATA LIST LIST / A B N LI L2 L3 L21 L31 
VARIABLE LABELS A ‘VZDEL. MUŽE’ B ‘VZDEL. ZENY' 
VALUE LABELS A B 1 ‘ZAKL’. 2 '2 + 3 + 4’

3 ‘STR. S MAT.' 4 ‘VYSOK.'
COMPUTE ND = 1
IF (A EQ B) ND = 0
WEIGHT BY N
LOGLINEAR A B (1,4) WITH L1 L2 L3 L21 L31

I PRINT = ALL
I CWEIGHT = ND
/ »MODEL SYMETRIE
I DESIGN = LI L2 L3 L21 L31
I »MODEL QUAZISYMETRIE
I DESIGN = A B L21 L31

BEGIN DATA

Literatura

1 1 37.72 2 0 0 0 0
1 2 21.53 1 1 0 1 0
1 3 4.62 1 0 1 0 1
1 4 0.13 0 -1 -1 -1 -1
2 1 84.88 1 1 0 1 0
*> 2 161.59 0 2 0 0 0
2 3 48.23 0 1 1 -1 -1
2 4 5.30 -1 0 -1 0 1
3 1 8.98 1 0 1 0 1
3 2 32.54 0 1 1 -1 -1
3 3 44.42 0 0 2 0 0
3 4 2.06 -1 -1 0 1 0
4 1 1.42 0 -1 - 1 -1 -1
4 2 8.33 -1 0 -1 0 1
4 3 10.73 -1 -1 0 1 0
4 4 8.52 _ 2 -2 -2 0 0

END DATA
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