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Tento &lanek navazuje na dvé diivéjsi prace [Rehak. Rehakova 1984; 1986: kap.
17 a 18], které se zabyvaly porovninim marginilnich rozdéleni a strukturou &et-
nost{ ve ¢tvercovych tabulkdach parové zavislych dat (stru¢néji feéeno v symetric-
kych tabulkach) a kde byly téZ obsirné popsény situace, za nichz tyto tabulky vzni-
kaji a uvedeny piiklady ze sociologickych vyzkumi.

Cilem této price je ukdzat dalsi Glohy pro takova data a moZnosti jejich analyzy
a soucasné poskytnout ndvod. jak ziskat vysledky pomoci procedury LOGLINEAR
v systému SPSSX (u vétsiny uvedenych aloh se bez poéitate neobejdeme a SPSSX
je zndmy systém prd analyzu dat ve spoleéenskych védéch).

Analytické dlohy v symetrickych tabulkdch lze rozdélit do dvou typi:

a) porovnani margindlnich rozdéleni.
b) studium struktury Cetnosti vzhledem k

— statistické zdvislosti,

— .symetrii ¢etnosti podle hlavni diagonily a ruznym modifikacim pojmu sy-

metrie, '

— vnéjSimu kritériu (funkei) vyjadiujicimu hypotézu o vztahu mezi ¢etnostmi.
Zde bude uvedeno reseni vybranych tloh typu b) tak, jak je poskytuje metodologic
log-linedrnich modelti. Bude demonstrovano na datech o vzdélani manzelskych dvo-
jic z vyzkumu mésta Vamberka v r. 1988.1

Metodika log-linedrnich modelt se zatim v Ceskoslovenské sociologii plné nepro-
sadila. Jejimi prakopniky u nds byli T Havranek [1980] a P. Matéja [1985]. Jed-
noduchym idvodem do problematiky je kniha G. Uptona [1978]. piehled metod a
moznosti poskytuji dvé knihy S. J. Habermana [1978. 1979]. matematicka teoric
je napiiklad v monografii autorii Bishopové, Fienberga a Hollanda [1977], nebo
Habermana [1974].

V daldim textu bude vidy » (i. j) znaéit pozorovanou &etnost v poli (i, j) dvouroz.-
mérné tabulky. m (i. j) oéekdvanou Eetnost za uré¢itého modelu. 7 (7, j) odhad ode-
kdvané ¢etnosti. n (i+) = X n(i.j). n(+j) = En(i.j).n= 2 X n(.j).

i i i

Poznamenejme na zacatek. e postup hledani modelu. ktery vysvétluje vztahy

mezi udaji tabulky. spoéiva v naslednych krocich:

a) formulace modelu: log m (/. j) = soutet uréenych faktora.

b) odhad parametri odpovidajicich jednotlivym faktoram.

¢) odhad otekdvanych Setnosti za platnosti modelu.

d) test dobré shody mezi otekdvanymi a pozorovanym:i &etnostmi,

e) rozbor struktury rezidudlnich odchylek? v jednotlivych polich. byl-li model za-

mitnut, a formulace vhodnéjsiho modelu = navratem k a).

~

Redakee upozoriuje, 26 matematické vzorco jsou misto kurzivou vysazeny pistom stojatym
(1) Vzdélani bylo zjisfovdno puvodné na sedmibodové stupnici. Slouteni do étyi kategorif
bylo provedeno pro Géoly tohoto ¢linku autorkou.
() Roziduilni odchytkou v poli (7. ) jo zde mincno adjustované (upravené) roziduum r(i. j) =
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f) interpretace modelu, byl-li pfijat; zde je nutnd opatrnost, protoZe statistickd

shoda mize byt nalezena u nékolika i dost odlisnych modeld.
Jednim z problému. ktery vznikd pii logaritmovani ¢etnosti, je pfitomnost nulo-
vych Cetnosti v tabulce. Piipomeime si, Ze ty mohou byt bud strukturalni, nebo
vybérové. Nuly strukturdlni plynou z povahy dat: urcitd pole nemohou byt obsazena
a model takovéd pole musi vylouéit. Nuly vybérové jsou disledkem variability vy-
béru a malé pravdépodobnosti obsazeni daného pole: v praxi se vybérové nuly
odstraiuji napfiklad pti¢tenim velmi malého kladného éfsla do poli s vybérovymi
nulami, nebo pfi¢tenim &isla 0.5 (¢i jiného malého kladného &isla) ke vBem tetnostem.
Jinou moinosti je metoda pseudobayesovského odhadu [Bishop, Fienberg, Holland:
401 —433, spec..432] (ta byla pouzita na data tabulky 1, k odstranéni vybérové nuly
v poli (1, 4)). V dalsim budeme pracovat s tabulkou 2, kde uZ jsou véechny ¢etnosti
kladné.

Tabulka 1. Vzdélani manZelskych dvojic

B 1 2 3 4

A
1 39 21 4 0
2 85 163 47 5
3 8 32 46 2
4 1 8 11 9

A(B) = nejvyssi dosaZzené vzdélani manZela (manzelky),
1 = zdkladni (i nedplné), 2 = vyuceni nebo stfedni §kola bez maturity nebo stfedni odborné u&iliité
s maturitou, 3 = stfedni odborna nebo vieobecna $kola s maturitou, 4 = vysoka $kola.

Tabulka 2. Vzdéldni manZelskych dvojic — vyhlazend data

B 1 2 3 4
A
1 37,72 21.53 4,62 0,13
2 84,88 161,59 48,23 5,30
3 8,98 32,54 44,42 2,06
4 1,42 8,33, 10,73 8,52

Pozn.: Vyhlazeni dat bylo provedeno pseudobayesovskou metodou.

(n(z, j) — m(i, j)) [e(Z, HU2, kde ¢(i. f) jo odhad rozptylu nahodné veli¢iny n(i, j) ~ r‘n(i.j). Za
platnosti mod~lu mi r(i, /) asymptoticky standardni norméini rozdéleni. Asynptotika je pravdé.
podobn# v pofddku, jo- li kazdé m(i, j) vatdi nez 25. Neni-li tato podmmkn splnénn pak roziduiln{
odchylky poskytuji jen hrubé indikace velikosti chyb, ale i tak davaji informaci o struktufe wd-
chylek od modelu. N&které programy tisknou také (nebo jen) standardizovand rezidua (n(i. j)
m(i, jNIm(i, j)L2, kterd maji za platnostn modelu asy mptotlck\ normélni rozdéleni s nulovim
primérem a rozptylem v (i, j}, ktery je obecne rizny od jednitky: Proto, pokud jo to mozne.
méli bychom jako pravidlo pouiivat adjustovana rezidua.
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Model upiné nezavislosti

Hypotéza nezivislosti. obdobné jako u béiné asociaéni analyzy v libovolnych kon-
tingenénich tabulkach. je dana nékterou (z ekvivalentnich) formulaei pro véechna
pole tabulky:
n (i, j) = n (i4) n (+) /n. (1)
m (i.j) = a () b (j).

Druhd formulace fikd, Zc otekdvand ¢etnost v poli (!, j) vznikd jako soutin dvou ne-
zdvislych faktori — fddkového a (i) a sloupcového b (j). Hypotézu nezavislosti
mzZeme testovat znamym Pearsonovym testem chi-kvadrat a odchylky od ni na-
piiklad znaménkovym schématem (viz [Rehdk, Rehiakova 1978)).

Log-linearni model nezavislosti poskytuje paralelni test; je formulovan rovnicemi

log m (i, j) = A -+ AA(i) + AB(j).
X AA() = X 2B(j) = 0, (2)

J

kde A je cclkovy pomér, AA(i) je efekt i-tého Fadku (i-té kategorie proménné A).
AB(j) je efckt j-tého sloupee (j-té kategorie proménné B). Kategoric A({) a B(j) pusobi
nezdvisle jedna na druhé — vliv A(i) se neméni ve sloupcich, vliv B(j) se neméni
v fddcich.

Statistiky testu dobré shody dat s uréitym modelem, které se nejéastéji v analyze
dat pouzivaji jsou dvé:
a) vérohodnostni statistika G2

G2 = 2% Xn(i.)) log (n (i. j)/m (. j). (3)
)

b) Pearsonova statistika X2
X2= 2 Y(n(.j) — m (i, j)2/m (i, j), (4)
i

kde m (i, j} jsou odhady ofckdvanych &etnosti za daného modelu.
V modelu nezdvislosti je

i (i, j) = n (i+) n (+j)/n (5)

a G2 a X2 maji za hypotézy nezdvislosti asymptoticky rozdéleni chi-kvadrat s (I —1)2
stupni volnosti, kdyZ [ je potet Fadki (sloupeit) tabulky.

Pro data z tabulky 2 je G2 = 116.35, X2 = 156.29, coz pii deviti stupnich volnosti
déva pro obeé statistiky dosaZenou hladinu vyznamnosti P = 0.000 (< 0.050). Model
nezavislosti. podle kterého by byla vzdjomna volba partnerd v manzelstvi zcela ne-
zdvisld na jejich vzdéléni, neplati.

Model kvazinezavisl osti

V symetrickych tabulkdch byvd tendence k silnéjsimu obsazovianf diagondlnich polf,
tj. kombinaci vzdjemné si odpovidajicich kategorii Fidkové a sloupcové proménné,
a proto model nezdvislosti plati jen vzdené. Mize se stit, Ze po vynechani {blokovéni)
téchto poli3, plati pro zbytek tabulky model nezavislosti.
Model kvazinezavislosti pfedpoklida, ze
m (i,J) = a (7) b (j). jestlize i #j. (8)
=0 . Jestlize i=j.

(3) Blokované pole nemusi byt jen pole hiavni diagonaly, ale téZ napf. pole s velkou rezi-
duélni odchylkou, &i pole se strukturalni nulou.
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Vyjddreno jako log-linedrni model:

log m (i, j) = A+ AA(Q) + AB(), i 4. (7)
I AAG) = X 28(j) = 0.
i J

V tomto pripadé nelze vyjadiit odhady ocekdvanych Eetnosti algebraickym vyra-
zem, potitaji se iteraénim postupem. Statistiky G2 a X2 maji za modelu kvazineza-
vislosti pocet stupnu volnosti df = I (I —3) + 1.

Data tabulky 2 neodpovidaji ani tomuto modelu, nebot 2 = 19.10, X2 = 23.62;
to davd pii péti stupnich volnosti dosazené hladiny vyznamnosti P = 0.002 pro
G2 a P = 0.000 pro X2. Oproti modelu nezavislosti v8ak doslo ke zlepSeni, nebot
116.35/9 = 12.9 je mnohem vétsi, nez 19.10/5 = 3.8, které je stile jesté daleko od
jednicky .4

Hypotéza kvazinezévislosti fikd, Ze odhlédneme-li od manzelstvi, v nichz maji
partnefi stejné vzdélani, neprojevi se Zadnd zavislost mezi volbou a vzdélinim
v ostatnich manzelstvich. Jak vidime, ani tato hypotéza neplati. Silny pokles v hod-
noté G2/df mezi testem nezavislosti a kvazinezavislosti ukazuje na existenci vlivného
faktoru vedouciho ke shodé vzdélini v manzZelstvi. Ostatni faktory projevujici se
pfi vzniku vzdélanostni nerovnosti manzelskych para a vytvéiejici tetnostni struk-
turu, budou zkoumény pomoci dalich modeli a hypotéz.

Model symetrie

Symetrii v dvourozmérné symetrické tabulce rozumime situaci, kdy ocekdvané
cetnosti poli rozloZzenych symetricky vzhledem k diagonéle jsou si rovny, t;j.

m (¢, j) = m (J, t) pro vSechna 7 a j. (8)
Tomu odpovidé log-linedrni model A A
log m (i, j) = A + AA(i) + AB(j) + AAB(, j),

AA(i) = AB(i) pro viechna 1,
AAB(i, j) = 24B(j, i) proi < j, 9)
T‘2.1‘(1) = Z’).B(]) = ZAAT(x i) = ZJ.AB(l i) = 0.

Parametr AAB(i,j) se mterpretu]e ]a.ko interakéni efekt mezi i-tou kategorif pro-
ménné A a j-tou kategorif proménné B. Odhady céekdvanych Getnosti jsou

(@) +n(,1))/2,1 #j, >
m (i,j) = ' (10)
n (i, i), i=j.

statistiky G2 a X2 maji asymptoticky rozdéleni chi-kvadrdt s I (I —1)/2 stupni vol-
nosti.

Model symetrie tedy pfipousti specifické interakce mezi kategoriemi proménnych.

Na jeho platnost nemé vliv diagondla; margindlni populaéni rozdéleni jsou totozna.

Kdyby platil model (9) pro data tabulky 2, znamenalo by to, Ze interakce mezi

kategoriemi vzdélani v manzelskych dvojicich existuji, Ze jsou nezivislé na jejich

nositelich (muz, Zena) a Ze efekty jednotlivych kategorii vzdéldni manZela jsou stejné

jako odpovidajici kategorie vzdélani manzelky, Z tabulky 2 je v8ak na prvni pohled

zfejmé, Ze v ni model symetrie platit nebude (velmi rozdilné &etnosti = (¢, j) a n (J, ©)

(4) Jednim z kritérii vhodnosti modelu je pomér (2/df resp. X2/df (df = potet stupnu vol-
nosti statistiky); vychézi z toho, ze otekavana hodnota G2 i X2 je rovna df. Cim vétéi je statistika
nez df, tim horsi je model.
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a margindlni &etnosti » (i+). n(+i)). Skuteénd, G2 = 53.2, X2 = 498, df/=6
P = 0.000 pro obé statistiky. Model je horéi, nez model kvazinezavislosti (53.2/6 =
8.9 > 3.8), ale lepsi nez model nezdvislosti (8.9 < 12.9). Rozdil proti nezévislosti
mize byt zpiisoben tim. Ze na platnost modelu (9) nema vliv diagonala, jejiz obsazeni
je na prvni pohled velmi vyrazné. Rozdil proti kvazinezavislosti mazZe byt zpasoben
jak zfejmou rozdilnosti margindlnich rozdélenf, tak ovSem i moZnou neplatnosti
interakéni symetrie.

Model kvazisymetrie '

Model symetrie je velmi pfisny a ve spoletenskovédn{ praxi bude platit jen zt fdk akdy
Méné omezujici je model kvazisymetrie, ktery predpoklids, Ze

m (i,j) = a(i) b(j) d(ij),
nebo alternativné
m(i,j) m(j,k) m(k,i)/m(j,i)m(k,j) m(i,k) = 1.
Log linedrni vyjadieni je
log m(i,j) = 4 + AA() + AB(j) + AAB(i,j),
MB(ij) = AAB(j D), i<, (12)
ZlA(l) = 21}3(]) = ZAAB(l,J) = X AAB(i,j) = 0.

Model kvazisymetrle se lisf od modelu sy metne tim, zc uz nepredpoklida rovnost
fadkovych a sloupcovych efekti, tj. shodu marginalnich rozloZeni,ale pouze symetrii
interakénich efektt. Odhady ofekavanych detnosti mimo diagonalu se nedaji vy-
jadrit algebraickym vyrazem, ziskdvaji se pomoci iteraénfch algoritmi. Pro odhady
na diagondle plati m(i,i) = n(i,i) jako u modelu symetrie.5 Statistiky G2 a X2 maji
asymptoticky rozdéleni chi-kvadrat s (I —1) (I —2)/2 stupni volnosti. ZavaZnost
modelu spoéivd v tom. Ze odhaluje a méfi skryté symetrické interakce mezi katego-
riemi fddkové a sloupcové proménné po extrakci a odedteni vlivu rozdilnych margi-
nalnich efekta.

Pro tabulku 2 a model kvazisymetrie je G2 = 0.90, X2 = 0.88, coZ pfi tiech stup-
nich volnosti davé dosaZenou hladinu vyznamnosti 0.825 pro G2 a 0.829 pro X z
a proto tento model odpovidd datim velmi dobfe; to dokumentu)e i tabulka 3.
Viimnéme si, Ze adjustovand rezidua 7(:,j( a r(j,i) se lisi jen znaménkem, tak je
tomu v modelu kvazisymetrie vidy.

Prvni zavér tedy je, Ze existuje symetrickd intcrakce mezi kategoriemi vzdélini
u manzelskych dvojic pfes nerovnost vzdélanostni struktury muza a Zen. Dalsi
interpretace vychdzi z odhadt hodnot fddkovych, sloupeovych a zvlisté interakénich
efektii.

Tyto odhady, odhady jejich rozptylti a daléi odvozené charakteristiky (z-skory.
intervaly spolehlivosti) jsou tim presngjdi, ¢im vét&i je polet pozorovani. a to nejen

(3) Modely symetrie a kvazisymetrie byly formulovany pro uplné tabuiky. ale protoze jsou
v obou pFipadech odhady oéckavanych ¢etnosti diagonaly rovny pfisludnym pozorovanym éet-
nostem, puasobi odchylky od modelu jen pole mimo diagonalu a proto se odhady ocekavanych
éetnosti v nedmgonalm(u polich, rezidualni odehylky. hodnoty (72, X2, ani poéty stupnh volnosti
noméni, at uz pracujeme s tplnou tabulkou nebo blokujeme (llugunalu ¢i ma tabulka na diago-
nale strukturni nuly. Mé&ni se v8ik odhady paramatra lunbda, nebot kdyz vyvloué¢ime diagonalu,
vylouéimo parametry AAB(i, i), / £/ < I. Poznamencjme jedté, ze pokud vyjmome diagonilu,
Je pro I = 3 model kvazisymetrie ckvivalentni x modelom kvazinezavislosti a pro 7 > 3 plyne
kvazisymetrie z kvazinezavislosti.
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Tabulka 3. Pozorované éetnosti, odhady oéek4dvanych Setnosti a adjustovana rezidua pfi modelu kvazisy-
metrie pro tab. 2.

B 1 2 3 4
A

1 37,72 21,53 4,62 0,13
37,72 22,09 4,02 0,17
- -0,37 0,41 - 0,11
2 v 84,88 161,59 48,23 5,30
84,32 161,59 49,70 4,39
0,37 - -0,83 0,81
3 8,98 32,54 44,42 2,06
9,58 31,07 44,42 2,93
- 0,41 0,83 - -0,78
4 1,42 8,33 10,73 8,52
1,38 9,24 9,86 8,52

0,11 - 0,81 0,78 -

G*=0,90, P = 0,825, X* = 0,88, P= 0,829, df = 3

celkové, ale i v kazdém poli tabulky. Je dosud mélo zndmo o tom, pro jak velké cet-
nosti v polich je uz dosaZeno dostatetné presnosti. V datech je milo vysokoskoliku
jak mezi muzi, tak mezi Zenami a nékteréd pole jsou tak mizivé obsazena, Ze k ziska-
nym vysledkim je tfeba pristupovat jen velmi opatrné.

Kazdy z-skor slouZi k testu hypotézy, Ze k nému pfislusné lambda je nulové. Pokud
bereme kazdy efekt zvlast, pak ta lambda, kterd jsou v absolutni hodnoté vétsi nez
1.96 lze povazovat za nenulovd (hladina vyznamnosti & = 0.05). Pokud budeme
interpretovat vice efektl najednou a zajimé nés vyznamnost celé struktury najednou.
je spravné pouzit simultdnni test, napf. Holmiv sekvenéni postup.®

Hlavni efekty zde nejsou zvlast zajimavé, lze fici, Ze v podstaté odrazi margindlni
strukturu tabulky. Porovname-li mezi sebou AA(i) a AB(i) (i=1,..., 4) vidime, pro¢
nemohl platit model symetrie. Piisludné z-skéry jsou?

(6) Holmav sekvenéni postup jo popsan v publikaci Rehak, Rehédkova (1986 : 324), v niz
lze nalézt téz tabulku kritickych hodnot dvoustranného normadlniho testu pro simulténni testo-
vani hypotéz (Tabulka A).

(7) Vypotet jmenovateli se provadi podle vzorce:
var (AMi) — AB(i)) = var AA(i) + var AB(i) — 2 cov (A(i), AB(i)). Protozo véak nékteré programy
(napf. LOGLINEAR v SPSSX) notisknou var AA(I), var AB(I), cov (AMI), AP(])), jo vypodet

1—1 :
var (AM(I) — AB(I)) pondkud nopfijemny: var (AA(1) — AB(I)) - X var (2A(i) +

1=

I-2 I-1°
+2 X X cov (AA(i), AA())) +
i<j
1-1 1-2 I-1 . .
+ Z var (AB(i) + 2 £ X ocov (AB(i), AB(j)) -

i=1 1<)

I-1 I-1 )
—2 5 X cov (AA(i), AMG), AB()))-
i=1 j=1
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Tabulka 4a. Odhady parametri modelu kvazisymetrie pro tab. 2.

Parametr Odhad Std. chyba Z-skor 95 %.interval spolehlivosti
A(1) - 0,836 0,175 - 4,777 - 1,179 — 0,493
AQ2) 1,301 0,135 9,637 1,036 1,566
A A(3) 0,216 0,153 1,412 - 0,084 0,516
A(4) "~ 0,681 0,181 - 3,762 - 1,036 - 0,326
A(1) 0,236 0,149 1,584 - 0,056 0,528
A(2) 1,035 0,154 6,721 0,733 1,337
B AQ3) 0,420 0,154 2,727 0,118 0,722
A(4) - 1,691 0,248 - 6,818 -2,177 - 1,205
A(L1) 1,805 0,348 5,187 1,123 2,487
A (2,1) 0,472 0,142 3,324 0,194 ~ 0,750
A(2,2) 0,324 0,169 1,917 - 0,007 0,655
A(3,1) - 0,618 0,213 -2,901 - 1,035 - 0,200
4 (3,2) — 0,240 0,143 - 1,678 - 0,520 0,040
AP 4 (3,3) 0,733 0,206 3,558 0,329 1,137
A(4,1) - 1,659 0,519 — 3,196 - 2,676 - 0,642
1(4,2) — 0,556 0,216 -2,574 - 0,979 - 0,133
A(4,3) - 0,125 0,226 0,553 - 0,318 0,568
A(4,4) 2,090 0,412 5,073 1,282 2,898

Pozn.: A = Kategorie vzdélani muze
B = kategorie vzd€lani Zeny
AB = kombinace kategorii vzdélani pro muze i Zeny
(AA
(AA
(A4
(AA

1) — AB(1))/}/var (AA(1) — AB(I)) = —1.072/0.203 = —5.277,
2) — AB(2))/}/ var (AA(2) — AB(2)) = 0.266/0.147 = 1.810,
3) — AB(3))/V/var (AA(3) — AB(3)) = —0.204/0.176 = —1.159,
4) — AB(4))/)var (AA(4) — AB(4)) = 1.010/0.285 =  3.540,

o~ o~ o~ —

takZe rozdily AA(1) — AB(1) a 14(4) — AB(4) jsou vyznamné odli§né od nuly (x = 0.05).
a to je v rozporu s predpoklady modelu symetrie (v souboru je statisticky vyznamnd
prevaha Zen nad muZi u zdkladniho vzdélani a naopak prevaha muZd nad Zenami
u vysokoskolského vzdéldni).

Viechny variance a kovariance na pravé stran¢ uz nalezneme ve vystupech z vyée uvedenédho
programu.
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Interakéni efekty vyjadfuji intenzitu vzdjemné volby od vysoké pritazlivosti
(velké kladné ¢islo) az k vysoké nepritazlivosti (zaporné &islo s velkou absolutni hod-
notou). Simultdnnim testem (« = 0.05) zjistime, Ze z interakei jsou nenulové 4 (1,1),
A(2,1), 2(3,1), 2(3,3), 1 (4,1), A (4,2), a 4 (4,4). Kladné znaménko jeu A (1,1), A (2,1),
A(3,3) a A (4,4), takze kombinace vzdélani 1 —1, 2—1, 3—3, 4—4 se pritahuji. Za-
porné znaménko u 4 (3,1), 4 (4,1), A (4,2) fikd, Ze kombinace 3—1, 4—1, 4—2 se ne-

Tabulka 4b. Hodnoty koeficientd A (i, j) v modelu kvazisymetrie pro tabulku 2

i 1 2 3 4

i
1 1,8 0,5 - 0,6 —1,9
2 0,5 03 =02 - 0,6
3 - 06 -02 0,7 0,1
4 =17 - 06 0,1 2.1

piitahuji. U kombinaci 2—2, 3—2, 4 —3 se nenulovy interakén{ efekt statisticky vy-
znamné neprojevil. Hodnoty parametra je nutno posuzovat relativné vzhledem k celé
struktuie, nebot jsou vazany vztahy (12). Interpretace koeficient proto musi vzdy
vychézet z kontrasti jejich hodnot.

Vysledky tabulky 4a tedy rikaji, Ze pfi zachovani symetrie volby se paruji prede-
viim obé nizsi kategorie. Déle se tu upfesnuje informace o vyznamnosti volby shod-
nych kategorii: neplati u vSech stupnu vzdélani. nebot u kombinace 2—2 odpovida
pocet manzelstvi otekavané hodnoté za predpokladu nezavislého (ndhodného) vzdé-
lanostniho parovéani. Snizeni intenzity vzajemné volby v parech se tyka ,,vzdalenych®
kategorii. To je dobte vidét z tabulky 4b. z jejiz struktury je ddle mozno vyéist kle-
sajici usporiadani hodnot smérem od diagonaly a na jeho zékladé hypotézu dale spe-
cifikovat — viz dalsi, tzv. distanéni model.

Distan&ni modely

Parametry AAB(/.j) v tab. 4b maji klesavy charakter ve sméru od diagondly, to zna-
mena, ze ¢im déle jsou od sebe kategorie vzdélani, tim méné takovych kombinaci se
vyskytuje u partneru v manzelstvi. Je tedy mozné pokusit se o upfesnéni modelu
a k podmince kvazisymetrie jesté pridat klesavy charakter interakénich faktora
ve sméru od diagonaly. To lze provést distanénimi modely, které jsou oviem pouZi-
telné jen v situacich, kdy proménné jsou alespon ordindlni, aby mél smysl pojem
..vzddlenost kategorii proménné’. Jednoduchy distanéni model

log m(i,j) = A + AA31) + AB(j) + n i — jl, (13)
ZAA() = XAB(j) = 0

ddvd interakei mezi kategoriemi ¢ a j do souvislosti s jejich vzdilenosti méfenou jako
I — jl. pficemz vaha této vzdilenosti (parametr 7) je konstantni, nezavisld na ¢ a j.
Pro n =0 prechdzi model do modelu nezdvislosti, je-li studovana celd tabulka, nebo
do modelu kvazinezivislosti, je-li vyloutena diagonéla.

Statistiky dobré shody dat z tabulky 2 s distanénim modelem (13) jsou G2 = 8.81,
X2 — 8.14, coz pFi osmi stupnich volnosti (obecné I (1-2)) ddvd dosazené hladiny
vyznamnosti P = 0.358 a P = 0.420, takZe model nelze zamitnout. DluZno Fici, Ze

409



Tabulka 5. Pozorované cetnosti, odhady ocekdvanych cCetnosti a adjustovand rezidua pfi distancnim
modelu pro data z tab. 2.

B 1 2 3 4

A
37,72 21,53 4,62 0,13
1 40,97 17,51 5,01 0,51
-1,19 1,34 - 0,20 - 0,55
84,88 161,59 48,23 5,30
2 75,93 170,37 48.74 4,96
2,10 —2,38 -0,14 0,20
8.98 32,54 44,42 2,06
3 12,65 28,38 42,63 4,34
-1,27 1,14 0,57 -1,33
1,42 8,33 10,73 8,52
4 3,45 773 . 11,62 6,20
-122 0,27 -0,36 1,41

G* =8,81, P= 0,358, X* = 8,14, P= 0,420, df = 8

vysvétluje data hiife, nez model kvazisymetrie (12). co je vidét i z porovnani ad-
justovanych rezidui z tabulky 3 a 5.
Nejvétsi odklon od modelu je pisoben druhou kategorii. a to v polich (2,1) a (2,2),
kterd se kompenzuji. Pfitazlivost kombinace vzdélani 2-2 je vyrazné mensi nez
u 1-1, 3-3, 4-4 a kombinace (muz. 2) — (%ena. 1) je zastoupzsna vice, nez modeal ¢eka.
Parametr % je zdporny a vysoce vyznamny. V absolutni hodnoté je vyraz # |i—j]
tim vétsi, ¢im jsou od sebe kategorie vzdéldni parthert vzdalend;jsi.

V modelu kvazisymetrie pasobi odchylky jen pole mimo diagondlu. a to neni
pravda v distanénim modelu. Zkusme ho tedy jedté jednou. ale na tabulku s vyne-
chanou diagondlou. Statistiky dobré shody jsou ted G2 = 1.64. X2 = 1.56. coZ pfi

Tabulka 6. Odhady parametrii distanéniho modelu pro tab. 2.

Parametr Odhad Std. chyba 95 % Interv. spol. z-skor
A1) - 0,485 0,122 -0,724 - - 0,247 - 3,988
A A(2) . 0,961 0,081 0,802 1,119 11,874
A(3 ~ 0,002 0,102 -0,202 0,197 - 0,022
A4 - 0,474 0,160 - 0,788 - 0,160 - 2,962
A(1 0,591 0,105 0,385 0,797 5,626
B A2 - 0,570 0,094 0,385 0,755 6,032
A Q3 0,148 0,102 - 0,052 0,348 1,448
A4 - 1,309 0,198 - 1,697 - 0,921 - 6,611
AB g - 0,829 0,081 - 0,988 - 0,670 - 10,247
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Tabulka 7. Pozorované &etnosti, odhady ocekdvanych detnosti a adjustovand rezidua pfi distanénim
modelu pro tabulku 2 s vynechanou diagondlou.

B 1 2 3 4
A

: - 21,53 4,62 0,13
1 - 22,28 3,69 0,31
. T = - 0,50 0, 62 -0,33
84,88 —— 48,23 5,30
2 84,13 - 50,14 4,14
0,50 — - 1,05 0,99
8,98 32,54 - 2,06
3 " 882 31,72 - 3,04
0,09 0,43 - - 0,87

1,42 8,33 10,73 =

4 2,33 8,40 9,75 -

= 0,72 - 0,04 0,87 -

G* = 1,64, P =0,801, X* = 1,56, P = 0,816, df = 4

¢tyfech stupnich volnosti (obecné df = I(/-3)) didva dosaZenou hladinu vyznamnosti
P =080l a P = 0816. Je zfejmé, Ze nediagondlni data vyhovuji distanénimu
modelu (13) lépe. nez data tplnd. Vysledky jsou shrnuty v tabulee 7 a 8. VSimnéme
si, ze vysoké reziduum v poli (2,1) zmizelo. To potvrzuje domnénku, Ze v predchozim
modelu vadilo zvlastni postaveni pole (2.2).

Vzdalenost mezi kategoriemi ¢ a j nemusi byt v distanénim modelu vyjéddiena jen
pomoci i-j|, ale jakoukoliv jinou rozumnou funkei, napt. (i-j)3, kterd vyjadiuje rychlejii
pokles nebo rist interakce. nez |i-j|. Pro data z tabulky 2 bez diagondly a model

log m(i,j) = 4 + AA(»i) + AB(j) + n(i-j)?, (14)
ZAA() = ZAB(j) =0

Tabulka 8. Odhady parametri distanéniho modelu pro tab. 2 s vynechanou diagondlou.

Parametr Odhad Std. chyba 95 % interv. sppl. z-skor
A 51 -049 . 0,184 - 0,857 - 0,135 - 2,693
A A2 1,139 0,189 0,768 1,509 6,012
A 53 ' - 0,143 0,152 - 0,441 0,155 - 0,941
A4) - 0,499 0,203 - 0,897 - 0,101 - 2,458
Al 0,562 0,148 0,272 0,852 3,799
B AQ2 0,869 0,208. 0, 1461 1,277 4,177
A3 0, 1044 0,156 -0, 262 0,350 0,286
A4 -1 475 0,297 - 2,057 - 0,893 -4, 1966
AB 1 -0,973 0,227 — 1,418 -0,528 - 4,279
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Tabulka 9. Interakéni ¢leny modelu (13) pro tabulku 4 x 4

0 1 2n 3n
n 0 n 27

2n n 0 n

Iy ‘ 27 n 0

Tabulka 10. Interakéni ¢leny modelu (15) pro tabulku 4 x 4

0 m m+n m+n+n;
M 0 n2 N2+ 13
m+n N2 - 0 13
M+ n2+n; . Mt N3 0

dostaneme G2 = 0.92, P = 0.922, X2 = 0.90, P = 0.924, df = 4 a nejvétsi adjusto-
vané reziduum —0.85 v poli (2,3), coZ je je8té lepsi vysledek nez pro model (12).
Odhad parametru 7 je roven —0.301; model tak ukazuje, Ze pritazlivost kategorii
vzdélani pti vstupu do manzelstvi klesa velmi rychle s rozdilem mezi nimi.
Distanénich modeli existuje celd fada, zde jesté ukdicme jedno zobecnéni modelu
(13). Tabulka 9 ukazuje, jak vypadd interakéni ¢len u log m(i,j) pro tabulku 4 x 4
a model (13). V8imnéme si, Ze interakéni ¢leny ve vedlejdich diagonalich jsou vidy
stejné, tj. mezi kategoriemi se predpoklads stejna vzddlenost.
Jednoduché zobecnéni, které ukazuje tabulka 10 a které vyjadiuje proménnou
vzddlenost mezi kategoriemi, vede na distanéni model

k=1
log m(i,j) = 4 + AA(i) + AB(j) +kE 7k, (15)
g = min(i,j) < h = max(i,j). ’
log m(i,i) = A + AA(i) + AB(i),
2 A1) = Y AB(j) = 0,

ktery lze aplikovat jak na celou tabulku (pak ma df = I(/-3) + 2 stupiii volnosti),
tak pouze na nediagonalni pole (pak ma df = (1-2)2 stupfia volnosti).8

Pro data z tabulky 2 a model (15) dostaneme G2 =: 6.29, P = (.392, X2 = 5.83,
P = 0.442, df = 6, maximdln{ adjustované reziduum = —2.04 v poli (2.2). Odhady
parametrl %1, 2, B2 jsou po fadé rovné —0.695, —0.842, —1.179 a jsou vyznamné
na hladiné &« = 0.05. Shoda modelu s daty je prakticky stejnd jako pro model (13)
a protoZe nelze prokazat, ic by se parametry 71, 72. 73 od scbe vyznamné lisily, ne-
pfinddi model (15) oproti (13) nic nového pro interpretaci.

(83) Pro I = 4 modely (13) a (15) splyvaji, jsou-li pouZity pouze na nediagonalni pole.
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Zavér

Uvedené modely nejsou zdaleka vsechny, které jsou mozné pro dvourozmérné sy-
metrické tabulky; jsou to spiSe ty zdkladni a méné rafinované, ale dobfe interpreto-
vatelné. Radu dalsich lze nalézt napt. v knize autort Bishopové, Flenberga a Hollan-
da [1977], kde je téZ provedeno zobecnéni pojmu symetric na vicerozmérné tabulky.

Dodatek: Zadini modeld v jazyce SPSSX

A. Modely nezdvislosti (1), kvazinezdvislosti (6) a distanéni modely (13) a (14).

Zde nejsou zadné problémy, jen neprijemnosti spojené s dopoc¢tem zavislych parametri (z pod-
mifnek, kteté jsou u modela vidy uvedeny) & ov8em téz jejich standardnich chyb, z-skéra a inter-
valua spolehlivosti, pokud chceme o parametrech provadét statistickou inferenci. Zaddni ukézeme

na datech z tab. 2.

DATA LIST LIST /| A B N
VARIABLE LABELS A ‘VZDEL. MUZE' B ‘VZDEL. ZENY'
VALUE LABELS A B 1‘ZAKL' 2°2 + 3 4 4’
3 ‘STR. S MAT’. 4 ‘VYSOK.’
COMPUTE ND =
IF (AEQ B)ND = 0
WEIGHT BY N
LOGLINEAR A B (1,4)
/ PRINT = ALL
/ *MODEL NEZAVISLOSTI
/| DESIGN = A B
| *MODEL QUAZINEZAVISLOSTI
/| CWEIGHT = ND
| DESIGN = A B
BEGIN DATA .

11 37.72
1 2 21.53
1 3 462
4 2 8.33
4 3 10.73
4 4 8.52
END DATA

COMPUTE D = ABS (A — B)
LOGLINEAR A B (1,4) WITH D

| PRINT — ALL

| *DISTANCNI MODEL (13)

| DESIGN = A B D

| *DISTANCNI MODEL (13) BEZ DIAGONALY

| CWEIGHT = ND

| DESIGN = A B D

Pozndmky: 1) ND je proménné blokujici diagondlu
2) Pro distanéni model (14) se nahradi proménnéd D prom&nnou DD = (A — B)**2.

3) Mezi prikazy BEGIN DATA a END DATA je zafazen vstup tabulky 2.

. B. Distanéni model (15).

Zde je kroms dat nutno zajistit vstup s hodnotami pomoenych proménnych W1, W2, W3, jejichz
koeficienty jsou parametry 11, 9z, 73 v jednotlivych polich tabulky (viz tab. 10).
V tabulea I xI je takovych prom&nnych I — 1. )

DATA LIST LIST /A B N W1 W2 W3
VARIABLE LABELS A '‘VZDEL. MUZE' B ‘VZDEL. ZENY’
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VALUE LABELS A B 1 ‘ZAKL’. 2 ‘24344
3 ‘STR. S MAT! 4 ‘'VYSOK'

WEIGHT BY N
LOGLINEAR A B (1,4) WITH W1 W2 W3
[ PRINT = ALL
| *DISTANCNI MODEL (15)
| DESIGN = A B W1 W2 W3
BEGIN DATA
37.72
21.53
4.62
0.13
84.88
161.59
48.23
5.30
8.98
32.54
44.42
2.06
1.42
8.33
10.73
8.562

OO OoOmO QOO

B 0O PO B SO BD e A DO B e B WO BN

Wb e 0 WO O O DD RO D RO e e e
DO = OO = O OO it et e O
O Ot et O et e it et DD et bt O S

O -

END DATA
C. Model symetrie (9) a kvazisymetrie (12)

Zadan{ ovéieni modelt symetrie a kvazisymeotrie, pokud chceme znat vischny paramoetry, je
velmi pracnd zdlezitost, a to tim pracndjsi, ¢im vétsi jo rozmér I tabulky. PFi ¢astéjsim pouZivéni,
nebo pii éteni dat pfimo ze souboru, bude nutné pfipravit zadani pro vytvoroni pomocnych pro-
ménnych, ¢ pfisludnou makroinstrukei.

"DATA LIST LIST /A B N L1 L2 L3 L11 L21 L22 L31 L32 L33
VARIABLE LABELS A ‘VZDEL. MUZE’ B ‘VZDEL. ZENY’
VALUE LABELS A B 1 ‘ZAKL.” 2 ‘24344

3 ‘STR. S MAT. 4 '"VYSOK.’
WEIGHT BY N
LOGLINEAR A B (1.4) WITH L1 L2 L3
L11 L21 L22 L31 L32 L33

/ PRINT = ALL

/| *MODEL SYMETRIE

/ DESIGN = L1 L2 L3 L11 L21 L22 L31 L32 L33

[ *MODEL QUAZISYMETRIE

/ DESIGN = A B LI1 L21 L22 L31 L32 L33

BEGIN DATA

1 1 37.72 2 0 0 2 0 0 0 0 0
1 2 2153 1 1 0 0 1 0 0 0 0
1 3 4.62 1 0 1 0 0 0 1 0 0
1 4 0.13 0 —-1 -1 =2 =1 0 -1 0 0
2 1 8488 1 1 0 0 1 0 0 0 0
2 2 161.59 0 2 0 0 0 2 0 0 0
2 3 438.23 0 1 1 0 0 0 0 1 0
2 4 530 —1 0 -1 0o -1 -2 0 —1 0
3 1 8.98 1 0 1 0 0 0 1 0 0
3 2 3254 0 1 1 0 0 0 0 1 0
3 3 44.42 0 0 2 0 0 0 0 0 2
3 4 206 —1 -1 0 0 0 0o -1 -1 -2
4 1 142 « 0 -1 —1 -2 -1 o —-1 0 0
4 2 8.33 -1 0 -1 0 -1 -2 0 -1 0
4 3 1073 -1 -1 0 0 0 0 -1 —1 -2
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AT (A AL SR

4 4 852 —2 -2 -2 2 2 2 2 2 2
END DATA

Uréeni pomocnych proménnych pro zaddn{:

a) I =4
Hodnoty pomocnych proménnych pro A = ¢ a B = j jsou

L1(i,j) = q(i,1) + q(j,1), L2(,j) = q(i,2) + q(j,2), L3(i,j) = q(i,3) + q(j,3),
L1Kij) = 2q(i,1) q(j,1), L21(1,j) = q(i,2) q(j,1) + q(i,1) q(j,2),
L22(1,)) = 2q(i,2) q(j,2), L31(i,j) = q(i,3) q(j,1) + q(i,1) q(j,3),
L32(i,j) = q(i,3) q(j,2) + q(i,2) q(j,3), L33(i,j) = 2q(i,3) q(j,3),
qi,r) =L, i=r,
=0,1#¥ri1<4
== - l; l = 4

b) Obecny pFipad tabulky I x 1

Jo treba vytvorit (I —1) (I+2)/2 pomocnych proménnych s hodnotami pro A = ia B = j
Lk(i,j) = q(i,k) + q(j.k), k =1,
Lrs(i,j) q(i.r) q(j s) + q(i,8) q(j, r). r,s = l Ilirzs
q(lr) =1l,i=r,
=01#ri<],
=-Li=1L

Odhady parametrit pro
a) model symetrie

Oznaé¢ms ¢&isla, ktord dostaneme ve vystupech z SPSSX v &asti ,,odhady parametri' u promén.-
nych L1, L2, ..., L(I — 1), L11, L21. ..., L(I — 1} (I — 1) jako u(1), u(2),..., p(I — 1), pu(1,1),
w(2,0),..., u((I — 1), (I — 1)). Pak odhady parametri modelu (9) jsou

I-1
M) = B() = p(), 1 Si ST, p) = .Z'l/t(i).
i=

MB(Lj) = MB(i) = u(i, j) = plh D), 1 S jsis ],

I-1
wLj) = Z pk,j) — 2pi, ),
k#j

MB(ii) = 2u(i, i), 1 Si 1,

I-1 I—1
wL )= & X u,j).
i=1 j=1

i=]
b) model kvazisymetrie
Oznadmo &isla, kterd dostanemn ve vystupech z SPSSX v lasti,,odhady parametri‘* u promén-

nych A, B, L11, L21,..., L(I—1) (I—-1) jako uA(1),.. o AT = 1), uB(1), ooy pBUI—1), pu(1, 1),
w2, 1) ...p(I — 1), (1 — 1)). Odhady paramet.r\) modelu (12) z nich uréime jako

A‘(l) =pri), 1 =i ST, uA]) = — L' HA®),
il

% I—1

AB(i) = pB(i), 1 S i <1, uB(I) = — X pBli),
i=1

N
(i, j) = ﬁA‘B(j. i)l ) =i 1 Sj<isSL,

I, =-—Z.‘ k,j) — 2 2
i) - |k’£$ i) n(js 3)
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~ I—-1 I-1
AB(iL D) = 2u(i,i), 1 €1 SLul,L) = X }J i, j).
da=1 j=
12}
Pokud bychom nechtgli ovéfovat model symetrie, vynechali bychom L1, L2, L3 (obecnd L(I— 1))
v Fadku DATA LIST a LOGLINEAR, cely DESIGN pro model symetrie a &tvrty, paty a desty
{obecn3 I 4 druhy) sloupec mezi BEGIN DATA a END DATA. (9)

D. Molel symtrie a kvazisymetrie 8 vynechanou diagondlou:
a) Symetrie

Pro tabulku I x I musfme vytvofit I—7 proménnych Lk, kde Lk(i, j) = Lk(j, i) = q(i, k) +
q(j, k); k=1,..., I-1; i, j=1,. I (té% mtZeme Lk(i, ) polozit rovno nule pro i=1,. , I.
k=1,..., I—I) a. déle I(I—3)/2 proménnych Lrs, kder >3, r = 2,..,1 — 1,

s=1,...,I-3 a

Lrs(i, 1) = 0,

Lrs(I, I — 2) = Lrs{(I - 2,1) = (I, 1) q(I — 2,8) + g({I,8) (I — 2,1) 4 1,

Lrs(I,TI — 1) = Lrs(I — I, I) = q(I, r) g(I — l s) +al,8)q(I —1,r) 41,
Les(I — 1,1 — 2) = Lrs{I — 2,1 — 1) =

Lrs(i, j) = Lra(j, 1) = q(i, r) q(j, 8) + qi, S) q(:.r)

pro ostatni dvojice (¢, j), pfitemz

q(i,r) = Ll i=r
= 0,i#nri<lI,
=—1i=1L

Prakticky to znamend, %o méme-li uz pkipravené hodnoty Lk(i,j) a Lrs(i, j) pro kompletn
tabulku, dostansm> z nich hodnoty pro tabulku s blokovanou diagonélou tak, Ze Lk(i, j) pie
vezmomso baza z’n‘ény, Lrs(i, i) pro i=1,..., I nahradime nulami, Lrs(I — 1,1 — 2) a Lrs(I — 2
I — 1) nahradime minus jednitkami, k hodnotém Lrs(I, I — 1N, Lrs(I — 1, 1), Lrs(l, I — 2)
Lrs(I — 2, I) piidtems jednicky a zbybek pfevezmeme beze zmény

~ Odhady parametri ve vystupech neni nutné prepoéitivat, ale je tieba dopoéitat AA(I Y, AB([),
).AB(I — 1,1 - 2), Aan(1, Jyproj=1,..., I — 1 podle vzorca

N -1 " -1,
M) = X AA() = AB(I) = — 3, AB(i),
i=1 i=1 -
N j -1, I-1
ABI - 1,1 —2)= X, ian(i, 1) — 2, AAB(;, 2) — ... — IZ 2;.AB(i. 1-3) =
=2 i= i=1—
I-11I-3

Z Z an(i, j),

N I-1
MB(Lj) = — 3 B K), j <L

k+1l

b) Kvazisymctrie

Pro tabulku I < I musime vytvofit jen I{I — 3) /2 proménnych Lrs podle stejnych vztaht jako

(9) Ctenai so muze na piikladd tohoto dodatku presvédiit, ze ani svétové renomované pro-
gramové systémy nejsou prili§ uZivatolsky vlidné. Zde je to vidét hned na dvou aspektech:
nutnost dopoéitdvat a dokonce pfepo¢itidvat parametry, abychom dostali interpretaéné dalezi-
tou informaci a nutnost sloZité vytviiet pomocné proménné pro slozité zadani jednoduchych
modeld. A coz teprve kdybychom chtéli znat i odhady rozptyla odhadii parametra, ktore nejsou
ve vystupech! Pro zdjemce pfipomeiime ti uZiteéné vzorce:

var ( Z X)) = E var Xj + 2 X 2 cov (X, Xy,
=1 i=l i<)
var aX = 32_ var X, cov (a X,bY) = abcov (X,Y).
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u symetrie. Rovnéz dopoéty odhadu parametra provedeme stejnym zpusobem, zde oviem
A(I) # AB(I).
Nésleduje ukazka zadani na datech z tab. 2.

DATA LIST LIST /A B N L1 L2 L3 L21 L31
VARIABLE LABELS A ‘VZDEL. MUZE' B ‘VZDEL. ZENY’
VALUE LABELS A B 1 ‘ZAKL! 2 ‘2 + 3 + 4
3 ‘STR. S MAT.' 4 ‘VYSOK.'

COMPUTE ND = 1
IF (AEQ B) ND =0
WEIGHT BY N
LOGLINEAR A B (1,4) WITH L1 L2 L3 L21 L31

| PRINT = ALL

| CWEIGHT = ND

| *MODEL SYMETRIE

| DESIGN = L1 L2 L3 L21 L31

| *MODEL QUAZISYMETRIE

| DESIGN = A B L21 L3l

BEGIN DATA

37.72
21.53
4.62
0.13
84.88
161.59
48.23
5.30
8.98
32.54
44.42
2.06
1.42
8.33
10.73
8.52

S Bk O 1Y -

| .
PO vt vt D ot DD et b D D e D e e B
|
|
Ot Dt bt Dot O Dt Dt D e D
| |
C Ot bt OOt ht ot ot OO bt e DO

!
D et et D DY et e et et D D et e D D

|

T R O T
I (I |
DO ot D bt ot D et DD et NG e D e D

O N o O NS

|
5]

END DATA
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