Sociologický časopis / Czech Sociological Review 2023, 59(4): 387-415 | DOI: 10.13060/csr.2023.004

The #Scicomm Phenomenon: Using and Analysing Big Data to Track Science Communication on Czech Research Institutional Websites

Petra Raudenská ORCID...1, Renáta Topinková ORCID...1,2
1 Sociologický ústav AV ČR, v. v. i., Praha
2 Ludwig-Maximilians-Universität München

This study focused on science communication on the websites of Czech research institutions. Particularly, we inquired to what extent Czech science is shared with the public on the Internet and what differences can be found between the websites of social and natural science institutions. Textual analysis revealed that on the scientific websites, terms like ‘science’ and ‘popularization’ occurred together with references to scientific institutions, study, and research. In the case of natural sciences, the term ‘popularization’ was more often linked to receiving science awards for science popularization and promotion. Structural web analysis showed that most scientific webs contained hyperlinks to social media such as Facebook, Twitter, YouTube, Instagram, and LinkedIn. Similarly, they often referred to online news outlets such as ceskatelevize.cz, novinky.cz, lidovky.cz, and rozhlas.cz. On the other side, they much less often referred to institutional and government websites. The results suggested that Czech science communication can be characterized as more interactive than canonical.

Keywords: science communication, public research institutions, big data analysis, text analysis, topic models, social network analysis

Received: December 1, 2021; Revised: January 1, 2023; Accepted: January 5, 2023; Prepublished online: January 6, 2023; Published: September 18, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Raudenská, P., & Topinková, R. (2023). The #Scicomm Phenomenon: Using and Analysing Big Data to Track Science Communication on Czech Research Institutional Websites. Sociologický časopis / Czech Sociological Review59(4), 387-415. doi: 10.13060/csr.2023.004
Download citation

Attachments

Download filePříloha CS

Raudenska-Topinkova-priloha.pdf
File size: 416.96 kB

Download fileAppendix EN

Raudenska-Topinkova-EN-appendix.pdf
File size: 416.63 kB

References

  1. Ackland, R. (2013). Web social science: Concepts, data and tools for social scientists in the digital age. Sage.
  2. Andrle, M. (2013). Současné přîstupy k popularizaci vědy v České republice. Teorie vědy/Theory of Science, 35(1), 113-125.
  3. Bail, C. A. (2014). The cultural environment: Measuring culture with big data. Theory and Society, 43(3), 465-482. https://doi.org/10.1007/s11186-014-9216-5 Go to original source...
  4. Bail, C. A. (2015). Lost in a random forest: Using Big Data to study rare events. Big Data & Society, 2(2), 2053951715604333. https://doi.org/10.1177/2053951715604333 Go to original source...
  5. Bauer, M. W., Allum, N. a Miller, S. (2007). What can we learn from 25 years of PUS survey research? Liberating and expanding the agenda. Public Understanding of Science, 16(1), 79-95. https://doi.org/10.1177/0963662506071287 Go to original source...
  6. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. Go to original source...
  7. Borgman, C. L. a Furner, J. (2002). Scholarly communication and bibliometrics. Annual Review of Information Science and Technology, 36(1), 2-72. https://doi.org/10.1002/aris.1440360102 Go to original source...
  8. Broks, P. (2006). Understanding Popular Science. Open University Press.
  9. Brossard, D., Dietram, E. a Scheufele, A. (2013). Science, New Media, and the Public. Science, 339(40), 40-41. https://doi.org/10.1126/science.1232329 Go to original source...
  10. Brossard, D. a Scheufele, D. A. (2013). Science, new media, and the public. Science, 339(6115), 40-41. https://doi.org/10.1126/science.1232329 Go to original source...
  11. Burns, T. W., O'Connor, D. J. a Stocklmayer, S. M. (2003). Science communication: a contemporary definition. Public understanding of science, 12(2), 183-202. Go to original source...
  12. Collins, K., Shiffman, D. a Rock, J. (2016). How are scientists using social media in the workplace? PLoS ONE, 11(10), e0162680. https://doi.org/10.1371/journal.pone.0162680 Go to original source...
  13. Côté, I. M. a Darling, E. S. (2018). Scientists on Twitter: preaching to the choir or singing from the rooftops? FACETS, 3(1), 682-694. https://doi.org/10.1139/facets-2018-0002 Go to original source...
  14. Čada, K., Červinková, A., Linková, M., Řeháčková, D. a Stöckelová, T. (2006). Věda jako věc veřejná: vědní politiky a média. Sociologický ústav AV ČR.
  15. ČSÚ. (2010). Kolik domácností v ČR má počítač a internet? Český statistický úřad. https://www.czso.cz/csu/czso/kolik_domacnosti_v_cr_ma_pocitac_a_internet
  16. Davies, S. R. a Hara, N. (2017). Public science in a wired world: how online media are shaping science communication. Science Communication, 39(5), 563-568. https://doi.org/10.1177/1075547017736892 Go to original source...
  17. Davies, S. R. a Horst, M. (2016). Science communication: Culture, identity and citizenship. Springer.
  18. Dijkstra, A. M., Roefs, M. M. a Drossaert, C. H. (2015). The science-media interaction in biomedical research in the Netherlands. Opinions of scientists and journalists on the science-media relationship. Journal of Science Communication, 14(2), 1-21. https://doi.org/10.22323/2.14020203 Go to original source...
  19. Dudo, A. a Besley, J. C. (2016). Scientists' prioritization of communication objectives for public engagement. PLoS ONE, 11(2), e0148867. https://doi.org/10.1371/journal.pone.0148867 Go to original source...
  20. Gu, F. a Widén-Wulff, G. (2011). Scholarly communication and possible changes in the context of social media: A Finnish case study. The Electronic Library, 29(6), 762-776. https://doi.org/10.1108/02640471111187999 Go to original source...
  21. Hilgartner, S. (1990). The dominant view of popularization: Conceptual problems, political uses. Social Studies of Science, 20(3), 519-539. https://doi.org/10.1177/030631290020003006 Go to original source...
  22. Hrabánková, M. (2018). Způsob prezentace přírodních věd ve vybraných českých médiích v roce 2013. Mediální studia, 12(01), 115-132.
  23. Jünger, J. a Fähnrich, B. (2020). Does really no one care? Analyzing the public engagement of communication Acientists on Twitter. New Media & Society, 22(3), 387-408. https://doi.org/10.1177/1461444819863413 Go to original source...
  24. Ke, Q., Ahn, Y. Y. a Sugimoto, C. R. (2017). A systematic identification and analysis of scientists on Twitter. PLoS one, 12(4), e0175368. https://doi.org/10.1371/journal.pone.0175368 Go to original source...
  25. Lee, N. M. a VanDyke, M. S. (2015). Set it and forget it: The one-way use of social media by government agencies communicating science. Science Communication, 37(4), 533-541. https://doi.org/10.1177/1075547015588600 Go to original source...
  26. Lovejoy, K. a Saxton, G. D. (2012). Information, community, and action: How nonprofit organizations use social media. Journal of Computer-Mediated Communication, 17(3), 337-353. https://doi.org/10.1111/j.1083-6101.2012.01576.x Go to original source...
  27. MacNaghten, P., Kearnes, M. B. a Wynne, B. (2005). Nanotechnology, Governance, and Public Deliberation: What Role for the Social Sciences? Science Communication, 27(2), 268-291. https://doi.org/10.1177/1075547005281531 Go to original source...
  28. Massoli, L. (2007). Science on the net: An analysis of the websites of the European public research institutions. Journal of Science Communication, 6(3), A03. Go to original source...
  29. Mimno, D., Wallach, H. M., Talley, E., Leenders, M. a McCallum, A. 2011. Optimizing Semantic Coherence in Topic Models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (s. 262-272). https://aclanthology.org/D11-1024.pdf
  30. Nielsen, H. K. 2010. More than 'mountain guides' of science: a questionnaire survey of professional science communicators in Denmark. Journal of Science Communication, 9(2), p.A02. https://doi.org/10.22323/2.09020202 Go to original source...
  31. Nielsen, K. H., Kjaer, C. R. a Dahlgaard, J. 2007. Scientist and science communication: A Danish survey. Journal of Science Communication, 6(1), 1-12. https://doi.org/10.22323/2.06010201 Go to original source...
  32. Nisbet, M. C. a Huge, M. (2006). Attention Cycles and Frames in the Plant Biotechnology Debate: Managing Power and Participation through the Press/Policy Connection. Harvard International Journal of Press-Politics, 11(2), 3-40. https://doi.org/10.1177/1081180x06286701 Go to original source...
  33. Nisbet, M. C. a Scheufele, D. A. (2009). What's next for science communication? Promising directions and lingering distractions. American Journal of Botany, 96(10), 1767-1778. https://doi.org/10.3732/ajb.0900041 Go to original source...
  34. Noruzi, A. (2008). Editorial: Science popularization through open access. Webology, 5(1), editorial 15.
  35. Office of Science and Technology and the Wellcome Trust, O. O. S. A. (2001). Science and the public: A review of science communication and public attitudes toward science in Britain. Public Understanding of Science, 10(3), 315-330. Go to original source...
  36. Pomikálek, J. (2011). JusText [software]. Masaryk University, NLP Centre. https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-000D-F696-9.
  37. Public Understanding of Science. (2014). Special Issue: Public Engagement in Science. https://journals.sagepub.com/toc/pus/23/1
  38. Purcell, K., Brennen, J. a Rainie, L. (2012). Search Engine Use 2012. Pew Research Center. https://www.pewresearch.org/internet/2012/03/09/search-engine-use-2012/
  39. The Royal Society. (2006). Science communication. Survey of factors affecting science communication by scientists and enginners. The Royal Society, Research Councils UK, and Wellcome Trust.
  40. Robins, G. (2015). Doing social network research: Network-based research design for social scientists. Sage.
  41. Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., … Rand, D. G. (2014). Structural Topic Models for Open-Ended Survey Responses. American Journal of Political Science, 58(4), 1064-1082. https://doi.org/10.1111/ajps.12103 Go to original source...
  42. Rödder, S., Franzen, M. a Weingart, P. (eds.). 2012. The sciences' media connection-public communication and its repercussions (Vol. 28). London: Springer Science & Business Media.
  43. Rybalko, S. a Seltzer, T. (2010). Dialogic communication in 140 characters or less: How Fortune 500 companies engage stakeholders using Twitter. Public Relations Review, 36(4), 336-341. https://doi.org/10.1016/j.pubrev.2010.08.004Sis.net. (n.d.). Science Communication Policy Brief. https://www.sisnetwork.eu/media/althjodasvid/Policy-Brief-SCIENCE-COMMUNICATION-FINAL.pdf Go to original source...
  44. Scheufele, D. A. (2014). Science communication as political communication. Proceedings of the National Academy of Sciences, 111(Supplement 4), 13585-13592. https://doi.org/10.1073/pnas.1317516111 Go to original source...
  45. Silge, J. a Robinson, D. (2017). Text mining with R: a tidy approach (First edition). O'Reilly.
  46. Stocklmayer, S., Bryant, Ch. a Gore, M. M. (2002). Science Communication in Theory and Practice. Kluwer Academic Publishers. Go to original source...
  47. Straka, M. a Straková, J. (2019). Universal Dependencies 2.5 Models for UDPipe (2019-12-06), LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. http://hdl.handle.net/11234/1-3131
  48. Su, L. Y. F., Scheufele, D. A., Bell, L., Brossard, D. a Xenos, M. A. (2017). Information-sharing and community-building: Exploring the use of Twitter in science public relations. Science Communication, 39(5), 569-597. https://doi.org/10.1177/1075547017734226 Go to original source...
  49. Šamanová, G., Škodová, M. a Vinopal, J. (2006). Obraz vědy v českém veřejném mínění. Sociologické studie 2006:8. Sociologický ústav AV ČR.
  50. Treise, D. a Weigold, M. (2002). Advancing science communication: a survey of science communicators. Science Communication, 23(3), 310-322. Go to original source...
  51. Trench, B. a Miller, S. (2012). Policies and practices in supporting scientists' public communication through training. Science and Public Policy, 39(6), 722-731. https://doi.org/10.1093/scipol/scs090 Go to original source...
  52. Uren, V. a Dadzie, A. S. (2015). Public science communication on Twitter: a visual analytic approach. Aslib Journal of Information Management, 67(3), 337-355. https://doi.org/10.1108/ajim-10-2014-0137 Go to original source...
  53. Van Noorden, R. (2014). Scientists and the social networks. Nature news, 512(7513), 126-130. https://doi.org/10.1038/512126a Go to original source...
  54. Wijffels, J., Straka, M. a Straková, J. (2021). udpipe: Tokenization, Parts of Speech Tagging, Lemmatization and Dependency Parsing with the 'UDPipe' 'NLP' Toolkit (R package version 0.8.6) [software]. https://cran.r-project.org/web/packages/udpipe/index.html
  55. Wijffels, J., M. Straka, J. Straková. 2021. udpipe: Tokenization, Parts of Speech Tagging, Lemmatization and Dependency Parsing with the 'UDPipe' 'NLP' Toolkit [online]. R package version 0.8.6. Dostupné z: https://cran.r-project.org/web/packages/udpipe/index.html.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.